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An oscillating wavelength dependence is obtained in the IR for the extinction 
coefficient α of a system of oriented ice plates. Each curve α(λ) has a fine structure 
and certain specific features, which may be used to estimate the average size of the ice 
plates. We show that it is only the oriented ice plates which may cause a noticeable 
wavelength dependence of the extinction coefficient of a crystalline cloud.  

 
We proposed to classify the atmospheric crystals 

according to the character of the optical radiation extinction 
in Ref. 1. The entire range of shapes of crystals can be divided 
into two groups. One group includes all the crystals lacking 
plane–parallel faces. The field scattered by such crystals 
within small scattering angles is completely determined by the 
diffraction field. As a result, their extinction efficiency is 
equal to 2, and their extinction cross section is equal to the 
doubled cross–sectional area of geometric shadow of the 
scatterer. The extinction coefficient of the studied volume 
containing such crystals is determined by their average size 
and number density, i.e., is independent of either the 
wavelength or the optical properties of crystal particles. In 
other words, the calculation of the extinction parameters for 
crystals from such a group is not difficult. The remaining 
group of crystals is more interesting in this respect. This group 
includes all polyhedral crystals, having at least a pair of 
plane–parallel faces. Previously, we have demonstrated2 that 
the complete field scattered by such crystals is determined 
within small scattering angles as a coherent sum of the 
diffracted and scattered fields. Here by the scattered field we 
understand the electromagnetic field, into which the field of 
the refracted beams, leaving the crystal in the direction of the 
propagation of the incident wave, is converted. Since each 
beam is a part of the wavefront of the plane wave, one and the 
same formalism may be employed to determine the scattered 
and diffracted fields. As a rule, these fields are comparable to 
each other, if the crystals have plane–parallel faces. As a 
result, when both the geometric and optical parameters of the 
crystal change, its extinction efficiency oscillates about 2. It 
was demonstrated in Ref. 3 that the extinction efficiency may 
reach the limiting value of 4 for plate crystals. It is for the 
crystals of this shape that their optical properties mostly affect 
the extinction efficiency. Consequently, in this paper we chose 
the system of the oriented ice plates as the scattering medium 
to study theoretically the optical radiation extinction 
coefficient.  

The relation for the cross section of polarized radiation 
extinction by a round plate has been derived in Ref. 4 within 
the framework of the method of physical optics 
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In addition to the doubled cross sectional area of the 
geometric shadow of the plate 2S, several other terms enter 
in formula (1). Such additional terms are related to the 
polarized scattered field of the refracted beams, transmitted 
through the plate. The variable γ in the above formula is the 
angle of orientation of vectors E

1
 and E

2
 of the incident 

elliptically polarized wave with respect to the plane of 
incidence upon the plate base and I
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, I
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three Stokes parameters of the incident wave. The 
amplitudes of the scattered fields B

C
 and B

⊥
 of the refracted 

beams and the cross–sectional area of geometric shadow S 
of a plate of radius a and thickness d are given by the 
following relations: 
 

B
C
 = T

C
 T
~
C
 ∑
j=1

J

 Sj e
iδjR

C   

2(j–1)
 , (2) 

 

B
⊥
 = T

⊥
 T
~
⊥
 ∑
j=1

J

 Sj e
iδj

 R 
⊥   

2(j-1)
, (3) 

 

S = (πα2 + 2ad tanβ)cosβ . (4) 
 

Here T and R are Fresnel's coefficients, δj is the relative 

run–on of the phase of the jth refracted beam transmitted 
(2j – 1) times through the plate, S

j is the cross–sectional 

area of the jth beam, and β is the acute angle between the 
direction of the incident wave and the normal to the plate 
base. The superscript J in sums (2) and (3) determines the 
number of the refracted beams being formed. If β ≠ 0, it 
always remains finite. For β = 0 the number of the refracted 
beams becomes infinite, and the problem of scattering is 
then symmetric. As a result, the formula for the extinction 
cross section takes the following form: 
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δj = kd[2(j – 1) n~ – 1] . (7) 
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We have n~ = n + iκ in Eqs. (6) and (7), where n~ is the 
complex refractive index of a plate, and k = 2π/λ is the 
wave number.  

As could be expected, when the wave falls normally 
onto the plate base (β = 0), the extinction cross section is 
independent of the state of polarization of the incident 
field. Note in this connection that although the extinction 
cross section formally depends on the polarization properties 
of the incident wave, this effect is weakly manifested for 
β ≠ 0 (see Ref. 4). Moreover, when either the geometric or 
optical properties of the plate vary, the behavior of the 
extinction cross sections, calculated from Eqs. (1) and (5), 
remain qualitatively unchanged, providing the angle β 
entering formula (1) does not exceed 45°. Thus, when 
speaking about determination of the general behavior of the 
integral extinction of optical radiation by the system of 
oriented plates, it stands to reason to choose for the 
integrable function the extinction cross section given by 
Eq. (5), which is more convenient for our analysis. If the 
extinction cross section is prescribed in a simpler form, such 
an integral characteristic of the scattering volume as the 
extinction coefficient is reduced to algebraic relation. In 
particular, the following formula has been derived for the 
extinction coefficient in Ref. 5: 
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where  
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–2 
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In the derivation of formula (8) the distribution function of 
plates over their radii was prescribed by a gamma–function 
with the parameters a

m and μ. Remind that a
μ
 is the plate 

radius corresponding to the maximum of the distribution 
function and μ describes the steepness of the slopes of that 
maximum. The value of N in Eq. (9) is the number density of 

plates in the scattering volume and 
–
a is their average radius. 

Note that the parameter 
–
a is related to the parameters of the 

gamma–distribution am and μ in terms of 
–
a = am 

(μ + 1)/μ. 

The value x
2
 in Eq. (8) has the same dimensionality as 

–
a and 

a
m, i.e., is measured in micrometers, while x

1
 is the 

dimensionless variable. Moreover, the parameters x
1
 and x

2
 are 

uniquely related to μ and a
m (see Ref. 5). Finally, in the 

derivation of Eq. (8) we accounted for the empirical relation 
between the thickness and the radius of a plate, given by the 

relation d = A(2a)η, where A = 2.020, η = 0. 449 (see Ref. 6). 
Note that the thickness d and the radius a in the latter 
formula should be given in micrometers.  

It has been shown in Ref. 5 that the contribution of each 
of the terms of the infinite sum in Eq. (8) is negligible in the 
visible. As a result, the extinction coefficient α is independent 
of the wavelength, so that it is given by the formula 

 

α = D . (10) 
 

Formula (10) takes exactly the same form as for the crystals 
lacking plane–parallel faces. However, now this formula is 
interpreted differently. The point is that a complete mutual 
compensation of the refraction beams occurs in the system of 
crystals with plane–parallel faces in the visible. In other 
words, when integrating the rapidly oscillating function, the  

contribution to the integral comes only from its regular part, 
whose role plays the diffraction field. Such an interpretation 
makes it possible to explain from a common viewpoint both 
the neutral behavior of the extinction coefficient in the visible 
and its noticeable wavelength dependence in the IR. Indeed 
the period of oscillations of the extinction efficiency in the 
visible is so small that the function of distribution of plates 
over the radii may be considered constant during this period. 
As a result, all deviations of this factor from its average value, 
determined by the diffraction field, are completely 
compensated during each oscillation period. The situation 
changes when we go over to the IR. In this range the period of 
oscillations increases many times and becomes so long, that 
the distribution function may be noticeably changed during 
this period. As a result, the complete mutual compensation of 
scattered fields of the refraction beams did not take place in 
the scattering volume. Therefore, the uncompensated 
increment to the diffraction field in the IR always exists 
whose value depends, in particular, on the wavelength.  

It has been demonstrated in Ref. 5 when calculating the 
infinite sum in Eq. (8) in the IR, it is sufficient to take only 
the first term into account, because all other terms are 
negligible in comparison with it. When calculating the 
extinction coefficient α in the IR, the latter statement is 
equivalent to taking account, along with the total diffraction 
field, of the scattered fields from those refraction beams, 
which have passed through the crystal only once. In this case 
the formula for the extinction coefficient takes the form  
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Formulas (8) and (11) have been derived by approximating 
the integral representation of the extinction coefficient with an 
error of not more than 2.5%. Such an estimate is valid for 
Eq. (11) in the IR, and for Eq. (8) – over the entire 
wavelength range. 
 

TABLE I. The parameters x
1
 and x

2
 entering into the 

approximation formula for the extinction coefficient. 
 

a– , μm   μ    

 1 2 3 4 5 6 
 

50 
17.17 22.13 27.08 32.05 37.02 41.99 

 1.18 0.86 0.68 0.56 0.47 0.41 
 

60 
17.17 22.13 27.08 32.04 37.02 41.99 

 1.28 0.93 0.73 0.61 0.52 0.45 
 

70 
17.17 22.13 27.08 32.04 37.02 41.99 

 1.37 1.00 0.79 0.65 0.55 0.48 
 

80 
17.17 22.13 27.08 32.05 37.01 41.98 

 1.46 1.06 0.83 0.69 0.59 0.51 
 

90 
17.17 22.13 27.08 32.05 37.02 41.99 

 1.54 1.12 0.88 0.73 0.62 0.54 
 

100 
17.17 22.13 27.08 32.04 37.01 41.99 

 1.61 1.17 0.92 0.76 0.65 0.56 
 

150 
17.17 22.13 27.08 32.05 37.02 41.98 

 1.93 1.41 1.11 0.91 0.78 0.68 
 

200 
17.17 22.13 27.08 32.05 37.02 41.99 

 2.20 2.20 1.60 1.26 1.04 0.77 
 

250 
17.17 22.13 27.08 32.05 37.02 41.98 

 2.43 1.77 1.39 1.15 0.98 0.85 
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The values x
1
 and x

2
, entering into formula (11), 

depend solely on the parameters of the distribution 
–
a  and 

μ.5 This makes it possible to precalculate x
1
 and x

2
 for 

any admissible values of 
–
a  and μ. Table I presents the 

calculated values of x
1
 and x

2
, corresponding to certain 

values of 
–
a  and μ, actually observed for the ice plates. 

Note that the intermediate values of x
1
 and x

2
, which are 

not listed in Table I, may be obtained by interpolation. 
Figure 1 presents the dependences of the refraction 

index n and the absorption index κ on the wavelength λ. 
The curves n = n(λ) and κ = κ(λ) are plotted according to 
the data published in Ref. 7. Note first of all that the 
values of the κ increase in the IR reaching 10–1 and even 
exceeding this value at certain wavelengths. As a result, 
the values of κ and n – 1 are comparable to each other, 
practically over the entire IR range. This means that the 
absorption index κ should strongly affect the spectral 
behavior of the extinction coefficient α. It is quite easy to 
find from analysis of Eq. (11) for α that with an increase 
of κ, the amplitude of the "refraction" term decreases.  

The effect of κ becomes particularly strong in the vicinity of 
the minima in the function n = n(λ). The minima of the 
refraction index n, corresponding to the wavelengths of 2.9 
and 10.9 μm, can be interpreted as a result of resonance 
interaction of optical radiation with the crystalline lattice of 
ice.7 The effect of the refraction index on the spectral behavior 
of the extinction coefficient is as follows. With n not only the 
amplitude of the "refraction" term decreases, but also its sign 
alternates periodically. In other words it is because of the 
refraction index n(λ) that the dependence α = α(λ) acquires an 
oscillating character. 

With increase of the average radius 
–
a of the ice plates 

the value of x
2
 increases too, which, in its turn, leads to 

decrease of the relative amplitude of oscillations of the 
dependence α = α(λ). This can be easy seen from the 
comparison of the curves α(λ) in Figs. 2 and 3, plotted for the 
small and large ice plates. As could be expected, the curves for 
small plates (Fig. 2) exhibit a finer structure. Moreover, each 
of them also has certain specific features, based on which one 
may estimate the average size of the ice plates. In particular, 
the position of the minimum in each curve, shown by the 
arrow, depends on average size of ice plates. 

 

 
 

FIG. 1. The real and imaginary parts of the complex index of refraction of ice vs. wavelength: 1) n = n(λ) and 2) κ = κ(λ). 

 
 

FIG. 2. Extinction coefficients of small ice plates vs. wavelength for N = 1 l–1 and μ = 5: 1) 
–
a = 100, 2) 90, 3) 80, 4) 70,  

5) 60, 6) 50, and 7) 40 μm. 
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FIG. 3. Extinction coefficients of large ice plates vs. wavelength for μ = 5: 1) N = 12.5 l–1 and –a = 250 μm, 2) N = 15 l–1 and 
–
a = 200 μm, 3) N = 20 l–1 and 

–
a = 150 μm, and 4) N = 25 l–1 and –a = 100 μm. 

 

Increasing the wavelength λ equivalent to decreasing the 
parameter x

2
. Hence, with λ the amplitudes of oscillations of 

the extinction coefficient should also increase. This is easy to 
see analyzing the same curves shown in Figs. 2 and 3. 
However within the wavelength range 11 – 15μm the 
extinction coefficient has almost neutral spectral behavior. 
This is explained by the advanced increase in the values of 
n – 1 and κ in comparison with the wavelength λ. As a 
result, the oscillation amplitudes rapidly diminish. 

The degree of concentration of the size of ice plates 
around their average value is determined by the parameter 
μ for the gamma–distribution. Smaller values of μ  

correspond to a weaker change of the distribution 
function and hence to more complete compensation for 
the scattered fields of the refracted beams. As a result in 
the case of a mildly sloping distribution function the 
amplitudes of oscillations in the α = α(λ) curve diminish 
and its fine structure is smoothed. This can be seen by 
comparing the spectral behavior of the curves α(λ) in 
Fig. 4, plotted for various μ. As for the large plates 
whose size is only weakly concentrated around the 
average value, note that, except for narrow spectral 
regions (see curve 1), the corresponding extinction 
coefficient has neutral behavior in the IR. 

 

 
 

FIG. 4. Extinction coefficients of ice plates vs. wavelength for various values of μ: curves 1, 2, and 3 correspond to μ = 1, 3, 

and 8, respectively; 
–
a = 250 μm, and, N = 10 l–1; curves 4, 5, and 6 correspond to μ = 1, 3, and 8; 

–
a = 100 μm; and N = 25 l–1

. 
 

A noticeable dependence of the extinction coefficient 
on the wavelength in the IR is a result of oscillations of 
the extinction efficiency. For plate crystals the range of 
the possible values of the extinction efficiency is (0, 4). 
For any other form of crystals with plane–parallel faces 
this range is much narrower. For example, for a 
hexagonal column,3 we have found that its extinction 
efficiency oscillates approximately from 1 to 3. Moreover, 
for an overwhelming number of combinations of the 
geometric and optical parameters of a hexagonal column  

the extinction efficiency falls within the 
interval (1.3, 2.7). It should also be taken into account 
that even if such hexagonal columns are coaxially 
oriented within the scattering volume, each of them may 
occupy any position determined by rotation of the column 
about its axis. After partial averaging of the light 
scattering characteristics of the system of such crystals, 
the range of variation in the extinction efficiency will 
become even narrower. It is quite clear that the low 
amplitude of oscillations of the scattering efficiency  
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govern low variation in the extinction coefficient vs 
wavelength. In other words, for a system of a needle–like 
crystals the spectral behavior of the extinction coefficient 
should be close to neutral, even when all such crystals are 
oriented. A neutral behavior of the extinction coefficient 
should also be observed in the IR for the chaotically 
oriented crystals. Indeed, because of their aerodynamic 
properties, crystals with chaotic orientation has minimal 
and maximal dimensions that differ only slightly.  
The extinction efficiency of such plates may only slightly 
deviate from its asymptotic value of 2. When we average 
over all possible orientations, such deviations are 
mutually compensated. Thus, if one finds during the 
observations of Ci clouds in the IR that their extinction 
coefficient is wavelength dependent, such a dependence 
would most probably be a result of the presence of 
oriented ice plates in the scattering volume. 
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