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Based on the rigourous solution of Schrodinger's quantum equation the evolution 
of the fundamental optical soliton with the Kerr type of nonlinearity is investigated. 
It is established that the quantum fluctuations steadily grow large over the entire path 
of nonlinear propagation that finally results in the annihilation of the soliton. The 
physical nature of this effect is clarified with the help of tetraphoton interaction 
model. It is shown that these effects restrict the possibility of production of the 
squeezed quantum states of light pulses.  

 
INTRODUCTION  

 
One of the most attractive features of Schrodinger's 

optical solutions, being formed and propagated in the 
nonresonance media with cubic nonlinearity, is their 
stability. Constant shape and regular phase of fundamental 
soliton follow from Schrodinger's classic equation. 
Moreover, the soliton is stable with respect to original noise 
modulation and in the process of nonlinear propagation it is 
subjected to "self–cleaning" from the fluctuation 
components.1,2  

Unfortunately, its quantum pattern appears to be not 
so optimistic. Thus, one of the results of development of the 
successive quantum theory of pulse evolution in the 
nonlinear lightguides3-10 is the conclusion about increasing 
uncertainty in phase and amplitude as well as about the 
dispersion spreading of the solitons.11-13 However, 
approximations used in the indicated papers restrict the 
applicability of this statements only by the initial stage of 
nonlinear propagation.  

What happens subsequently? Does classic property of 
"self–cleaning" compensate for the growth of quantum 
fluctuations when going over to the far diffraction zone? In 
fact the soliton becomes free of noise just for long mean free 
paths. Or does the destabilizing effect of quantum 
uncertainty intensify with time and finally does it lead to 
annihilation but not to formation of the ideal soliton? This 
paper is devoted to finding out the answers on these and 
other questions.  

 
BASIC RELATIONS  

 
Evolution of the electric field of a one–dimensional 

radiation field entering the transparent medium with cubic 
nonlinearity to the second order of the dispersion theory can 
be described by the following equation:3-13  

 

(∂/∂z + u– 1∂/∂t) E(+)(z, t) = [(i/2) g ∂2/∂t2 +  
 

+ (ikεnl/2ε0) ] 
E(–)(z, t) E

(+)(z, t)  E(+)(z, t) . (2.1) 

 

Here, E(+)(z, t) and E(–)(z, t) are the operators of 
positive and negative frequency parts of the field in 
Heisenberg representation slowly varying with time, the z 
axis is directed along the propagation path, t is time,  

u = (∂k/∂ω)–1 is the group velocity at the carrier frequency 
ω, k is the carrier wavenumber, parameter g = ∂2k/∂ω2 
characterizes the dispersion of the group velocity, εnl and ε0 

are nonlinear and linear parts of dielectric constant of the 
medium. Interaction is assumed collinear, spatial mode is 
assumed plane, and nonlinearity is assumed instantaneous. 
The derivation of Eq. (2.1) has been presented in detail for 
example in Refs. 4 and 9, therefore we will not dwell it 
specially. We note only that in order to go over to classic 
equation1 it is sufficient to replace E(+) and E(–) by the pair 
of complex conjugate amplitudes A and A*.  

Relation (2.1) is reduced to Schrodinger's nonlinear 
quantum equation by introducing the nondimensional 
variables:  

 

x = ut — z , S = gu2z/2 , ϕ(S, x) = E(+)(z, t)/⏐A0⏐ , 
 

c = — k εnl⏐A0⏐2/ 2u2gε0 , (2.2) 
 

where x is the displacement from the top of the pulse 
propagating with the velocity u, S is normalized distance 
passed by it, ϕ(S, x) is the normalized operator of photon 
annihilation at the points S and x, and A0 is the amplitude of 

the pulse at its top.  
According to the notation used in literature, we will 

replace the variable S by t which actually has the sense of 
normalized propagation time. Then we obtain  

 

i∂ϕ(t, x)/∂τ = ∂2ϕ(t, x)/∂x2 + 2cϕ+(t, x) ϕ(t, x) ϕ(t, x). (2.3) 
 

This equation as well as the operators entering into it 
has been written in the Heisenberg representation. In 
addition, the following commutative relations  

 

[ ]ϕ(t, x), ϕ+(t, x′)  = δ (x — x′) , 
 

[ ]ϕ(t, x), ϕ(t, x′)  = [ ]ϕ+(t, x), ϕ+(t, x′)  = 0 . (2.4) 
 

must be satisfied.  
However, Schrodinger's representation turns out to be more 
convenient for obtaining the rigorous solution. In this case the 
transformation of the vector describing the system state ⏐ψ> is  
 

iid⏐ψ >/dt = H⏐ψ > . (2.5) 
 

where the Hamiltonian is  
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H = � [(⌡⌠ϕ+
x(x)ϕx(x)dx) + c⌡⌠ϕ+(x)ϕ+(x)ϕ(x)ϕ(x)dx]. (2.6) 

 
Hereinafter, if it does not pointed out specially, 

integration is performed between the infinite limits.  
The soliton–like solution of Eq. (2.5) exists only for 

negative c. It can be represented as superposition of Fock's 
states ⏐n, p> with the fixed number of photons n and the 
momentum p11  

 

⏐ψ>⏐ = ∑
n

an⌡⌠gn(p) e– iE(n, p) t⏐n, p>dp . (2.7) 

 
Here the states ⏐n, p> are eigenstates for the 

Hamiltonian of Eq. (2.6)  
 

⏐n,p>=(n!)–1/2

⌡⌠Fnp(x1, ..., xn)ϕ+(x1) ... ϕ+(xn)dx1 ... dxn⏐0>, 

(2.8) 
 

Fnp(x1, ..., xn) = Nnexp
⎣
⎢
⎡

⎦
⎥
⎤ip∑

j=1

n

 xj + (c/2) ∑
1≤ i 

  ∑
<j≤ n

 ⏐xj — xi⏐  

 (2.9) 
 
and the normalization factor Nn is determined from the 

conditions <n′, p′|n, p> = δnn′ δ(p – p′)  
 
N n

2 = ⏐c⏐n–1 (n — 1) !/2π , (2.10) 

 
in addition  
 

⌡⌠⏐Fnp(x1, ..., xn, t)⏐2 dx1 ... dxn = 1 . (2.11) 

 
Energies E(n, p) are eigenvalues of the Hamiltonian of 

Eq. (2.6) and of the state given by Eq. (2.8)  
 

E(n, p) = np2 — c2n (n2 — 1)/12 . (2.12) 
 

If the pulse entering the lightguide represents the set 
of the coherent modes, then the weighting coefficients an 

and the functions gn obey the Poissonian and Gaussian 

distributions  
 

an = α0
n exp ( ) — n0/2 /(n!)1/2 ,   

 

gn(p) = π–1/4Δp–1/2 exp[ ]—(p — p0)
2/2Δp2 — inpx0 , (2.13)  

 

where n0 = |α0|2 is the average number of photons in the 

pulse, in addition  
 

∑
n

⏐an⏐2 = 1, ⌡⌠⏐gn(p)⏐2 dp = 1 . (2.14) 

 

Let us first determine the average amplitude of the pulse 
in the process of its nonlinear propagation (the derivation is 
given in Appendix A)  

 

<ψ⏐ϕ(x)⏐ψ> g ∑
n

 [ ]n(n + 1)/⏐c⏐q1
1/2 × 

× an* an+1 exp{(itc2n(n + 1)/4 +  

 

+ [(ip0(x — x0 — p0t) — (x — x0)
2Δp2/4]/q1} × 

 

× ⌡⌠exp{{—[(Δp–2 + i2t + 4t 2n(n + 1)Δp2] p2 + 

 

+ i2(n + 1/2) (x — x0 — 2p0t) p}/q1} × 

 
× sech (2πp/⏐c⏐) dp ,  q1 = 1 + itΔp2 . (2.15) 

 
In contrast to Ref. 11, no restrictions on the mean free 

path (on the parameter t) have been used in the derivation 
of this relation. The approximation sign refers only average 
number of photon n0 which must be much greater than 

unity. It is applicable in practice.  
At the initial stage (tΔp2 n 1) when the condition  
 

⏐c⏐n Δp n n0⏐c⏐ (2.16) 

 
relation (2.15) is reduced to the superposition of the pulses 
with envelopes in the form of hyperbolic secant, i.e., of 
classical solitons. If we neglect the spreading in the number of 
photons n and in the momentum p taking n = n0 and p = p0, 

then we obtain the fundamental classical soliton in a pure 
form  

 
<ψ⏐ϕ(x)⏐ψ> g 2–1(n0 — 1)⏐c⏐1/2 × 

 

× exp[ ]i(n0 —
 1)2c2t/4 + ip0(x — x0 — p0 t)  × 

 

× sech [ ]2–1(n0
 — 1)⏐c⏐(x — x0 — 2p0t)  . (2.17) 

 

However, the characteristic of quantum treatment 
consists in the fact that the exact values of the number of 
photons n and the momentum p, by virtue of the 
uncertainty principle, give rise to absolute uncertainty in 
phase and coordinate of this pulse. And this means that its 
average amplitude will be zero, and its envelope will be 
independent of x.  

Thus, the necessary condition for existing the soliton is 
the spread of energy and momentum, that, as we will 
further convince, leads to quite unfortunate consequences, 
appearing in the process of nonlinear propagation.  

 
EVOLUTION OF THE SOLITON SHAPE AND OF THE 

PHOTON NUMBER FLUCTUATIONS  
 

For clarification of the pulse dynamics let us first 
calculate the average intensity  
 
<N(x)> ≡ <ψ⏐ϕ+(x) ϕ(x)⏐ψ> = 2⏐c⏐–1 exp(—n0) × 

 

× ∑
n

 (n2n0
n/n!)) ⌡⌠ Gn(x, p) dp , (3.1) 

 

Gn(x, p) g p sh–1 (2πp/⏐c⏐) exp[—(Δp–2 + 4t2n2Δp2) × p2) + 

 

+ (i2n(x — x0 —
 2p0t)p] . (3.2) 
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Approximation sign in Eq. (3.2) refers only to the 
requirement on the average number of photons in the pulse:  
 

to satisfy the condition n0 . 1. In analogy with Eq. (2.15), no 

recommendations for the calculation are given in Appendix B. 
 

 

 

 
 

FIG. 1 Evolution of the soliton envelope in the process of its nonlinear propagation:  
a) n0 = 40 and (b) n0 = 80. The rest of the parameters are the same in both cases: 

c = π/100, Δp = 0.1, and p0 = x0 = 0.  
 

For analytical evaluation of the evolution of the soliton 
let us first assume that the spread of its components in n is of 
secondary importance for this process by taking n = n0. Then 

the integrand in Eq. (3.1) with the exception of phase 
exponent is the pulse spectrum. It is seen that this spectrum 
gets narrower with time due to the term exp[–(2tnpΔp)2] 
that, in its turn, gives rise to continuous spreading of the 
soliton in the process of its nonlinear propagation.  

Further analysis of Eqs. (3.1) and (3.2) shows that 
characteristic time of a double pulse broadening depends on 
the ratio between the parameter c and the range of variation 
of the momentum distribution function Δp. In addition, three 
following modes can be identified:  
 

tch g 2/n0⏐c⏐Δp for Δp . ⏐c⏐ , (3.3) 

 
tch g 21/2/n0⏐c⏐Δp for Δp g ⏐c⏐ , (3.4) 

 
tch g 31/2/ 2n0Δp2 for Δp n ⏐c⏐ , (3.5) 
 

Relation (3.3) has been obtained previously in Ref. 11, 
however, only for small t. Here it is generalized to the case of 
arbitrary time.  

Correctness of the assumption and of these estimates is 
confirmed by numerical calculations made according to 
Eqs. (3.1) and (3.2). Results of calculations are shown in 
Figs. 1 and 2. It can be seen that the soliton completely 
annihilates with time. The correctness of this conclusion 
becomes more evident after determining the variance of the 
photon number fluctuations  

 

<ΔN2(x)> ≡ <ψ⏐ϕ+(x) ϕ+(x) ϕ(x) ϕ(x)⏐ψ> + 

 

+ <N(x)> — <N(x)>2 g [ ]exp( — n0)/3  × 

 

× ∑
n

n2(n2 — 1) (n0
n/n!) ⌡⌠(1 + 4p2/c2) × 

 

× Gn(x, p) dp + <N(x)> — <N(x)>2  . (3.6) 
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The derivation of this relation is given in Appendix 3. 
Results of numerical computations are shown in Fig. 2.  

Unfortunately, relation (3.6) becomes more critical 
to the validity of the condition n0 . 1 than Eqs. (3.1) 

and (3.2). Therefore, the regions of quantum uncertainty 
in the number of photons are not shown in Fig. 1. 
However, for n0 = 500 approximate relation (3.6) is quite 

applicable.  
It follows from the given data that the process of 

nonlinear propagation of the soliton is accompanied not 
only by the spread in its envelope but also by continuous  

growth of the amplitude fluctuations that intensifies the 
process of its gradual annihilation. So, the photon statistics 
which initially obey the Poisson distribution with 
<ΔN2(x)> = <N(x)>, transforms into the super–Poisson one 
with <ΔN2(x)> > <N(x)>. This important conclusion could not 
be made in previous works3–13 because of inadequate model 
for large mean free paths. For example, both the Hartree 
approximation11 and the quasistatic approximation of a given 
channel8–10 lead to the conclusion about the invariability of 
the photon statistics in the process of nonlinear propagation 
and keeping it the Poisson one.  

 

 

 
 

FIG. 2 Plots illustrating the annihilation of the soliton in the process of its nonlinear propagation. Dashed curves 
indicate the boundaries of the region of quantum uncertainty in the number of the photons calculated in accordance 
with Eqs. (3.2) and (3.6). a) n0 = 500; b) n0 = 2000. The rest of the parameters are the same as in Fig. 1.  

 
Results shown in Fig. 2 suggest also that practically 

complete "noising" of the pulse happens exactly at the 
stage of its double broadening.  

What is the reason of such a behavior? Why the 
classical property of "self–cleaning" of the soliton from 
the fluctuations is not manifested?1,2 To explain the 
situation let us apply the following model. The soliton 
entering the lightguide and representing the set of modes 
in coherent states with different amplitudes may be 
represented as the superposition of classic envelope in the 

form of hyperbolic secant (being the regular component of 
the signal) and quantum fluctuations of the vacuum 
(being the noise).  

In the process of soliton propagation the initial noise 
modulation existing only within the limits of the soliton 
pulsewidth is "thrown" on the wings and gradually is 
self–cleaned". However the soliton cannot become free of 
the stationary vacuum noise, because this "through–off" 
is accompanied by the "drift" of the fluctuations initially 
being outside the soliton.  
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But why these phenomena opposite in their action do 
not finally compensate for each other and the pattern does 
not stabilized at the certain level of the increased 
fluctuations? To answer this question let us analyze the 
nonlinear evolution of the vacuum noise in the presence of 
the intense regular component of the soliton. Let us use for 
this purpose the Heisenberg representation of Schrodinger 
equation (2.1) or (2.3). Let us linearize it in the 
fluctuational components and consider, for clarity of 
representation, the single–mode interaction. As a result we 
obtain that the average number of noise photons is13  

 
<Nn> = Ψ2 , (3.7) 

 
where Ψ = t(cn0)

2/2 is the nonlinear run–on of the phase 

acquired in the process of the propagation and n0 is the 

average number of photons in the mode.  
Linearization in the fluctuational components actually 

means that we use the tetraphoton parametric interaction 
model in the field of a given classical pumping (of a regular 
signal). In addition, according to Eq. (3.7) noise intensifies 
continuously as a result of pumping over the photons of 
regular component in fluctuational one in consequence of 
tetraphoton parametric amplification.  

And it is not the only reason of destabilization. When 
going over to the far diffraction zone where the linear 
approximation becomes inapplicable, amplification of the 
fluctuations is accompanied by the depletion of the soliton 
by itself which contributes to pumping of the parametrically 
amplified vacuum noise because total number of photons 
must remain constant.  

As a result of such irreversible processes the soliton is 
gradually spreaded and finally it is completely degraded. 
However, the natural question of principle has already 
arisen which we have not discussed for a while. Strictly 
speaking, the results of calculations of <N(x)> and 
<ΔN 2(x)> do not give a complete basis for making the 
conclusion whether the soliton is really spreading or simply 
the uncertainty in x appears, while the broadening of 
<N(x)> is the consequence of averaging over the ensemble 
of solitons which start the propagation at the same time and 
then acquire a quantum spread in the x coordinate, i.e., 
different time delays? In this case a quantum–mechanical 
averaging makes it impossible to distinguish between these 
two unlike processes of evolution.  

 

 
 

FIG. 3. Simplified diagram of a correlator. Pulse has 
been delayed before photodetecting in one of the channels 
for the time Δt with respect to the time of soliton 
propagation through another channel.  

 

 
 

FIG. 4. Curves characterizing the evolution of the maximum 
squeeze ratio in the process of nonlinear propagation, i.e., 
with increase of Φ for different n0 = 13, 50, 2000, and 30, 

000. Dashed curve corresponds to the limit n0 ⇒ ∞, i.e., to 

the ideal case without the phase fluctuations.  
 

However, this situation is not hopeless. We can clarify 
the salient points by calculation of the intensity correlation 
function  

 

K(Δx) = ⌡⌠<N(x) N(x + Δx)>dx . (3.8) 

 

Physically such a correlation function is realized, for 
example, in measurements of ultrashort pulsewidths. A 
generalized diagram is shown in Fig. 3. Measurements are 
independent of absolute time of the pulse arrival and are 
determined only by the time delay. Hence, if the soliton is 
not spread in the process of nonlinear propagation, the 
correlation function after the soliton has passed through the 
fiber will be the same as upon entering it (at t = 0) since 
the uncertainty in x must have no effect in this case. If the 
pulse is spreaded then K(Δx) must broaden according to the 
degree of this spreading.  

Thus  
 

<N(x)N(x + Δx)> ≡ <ψ⏐ϕ+(x)ϕ+(x + Δx)ϕ(x + Δx)ϕ(x)⏐ψ>+ 
 

+ N(x) δ(Δx) = π–1/2Δp–1 exp(—n0)∑
n

(n0
n/n!) × 

 

× 
⌡⌠⌡⌠

exp{—[(p — p0)
2 + (p′ — p0)

2]) 2Δp2 + 

 

+ in[(x0 (p′ — p) + t(p′2 — p2)]} × 
 

× Fn(x, Δx, p — p′) dp′dp + N(x) δ(Δx) , (3.9) 
 

where the matrix element is  
 

Fn(x, Δx, p — p′) = 
 

= < n, p′ ⏐ϕ+(x) ϕ+(x + Δx) ϕ(x + Δx) ϕ(x)⏐n, p > . 
 

Unfortunately, the direct calculation of Fn is very 

difficult and do not result in analytic solution in general.  
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For this reason we will use the following indirect 
estimate.  

Let us go over to the new variables p1 = (p – p′)/2 

and p2 = (p + p′)/2 and integrate the obtained relation over 

p2. As a result omitting the subscript on p1 we obtain  
 

K(Δx) = n0δ(Δx) + 2exp (—n0) ∑
n

(n0
n/n!) × 

 

× 
⌡⌠

exp{—[(Δp–2+ 4t2n2Δp2)p2+ i2n(2p0t + x0)p]} × 

 

× 
⎣
⎡

⎦
⎤⌡⌠Fn(x, Δx, 2p) dx  dp . (3.10) 

 

Without loss of generality we may take x0 = p0 = 0. In 

what follows, the integration over the pulse p means that 
actually the external integrand describes approximately the 
soliton spectrum. The validity of such an approximation has 
been confirmed by the results of calculation of <N(x)> and of 
characteristic time of spreading given by Eqs. (3.3) – (3.5). 
Hence, this spectrum gets narrower with time, and K(Δx) 
must correspondingly broaden. It means that the soliton is still 
spreaded! Otherwise K(Δx) would remain constant with 
increase of t.  

 
PHASE AND FREQUENCY FLUCTUATION. 

SQUEEZED STATES  
 

Processes considered so far refer only to the evolution 
of amplitude characteristics. However, spreading and 
increasing the intensity noise do not close all variety of 
accompanying phenomena. Thus, amplification of the phase 
fluctuations in the process of nonlinear propagation of the 
soliton occurs much rapidly and is manifested perceptible at 
the initial stage, i.e., in the near–field zone.  

It was shown in Refs. 12 and 13 that in quasistatic 
approximation of the given channel which is valid for small 
t when the dispersion spreading considered above have yet 
had practically no effect, the variance of the phase 
fluctuations of the soliton is increased according to the law  

 

<ΔΘ2> = [ ]1 + 4Ψ2(t) / 4n0 . (4.1) 
 

Here Ψ(t) = t(cn0)
2/2 is the doubled nonlinear phase, 

i.e., the nonlinear run–on of the phase in the absence of 
dispersion. Similar relation can be obtained and based on 
the estimates made in Ref. 11 with the help of the Hhartree 
approximation that also ignores the dispersion spreading.  

If recording of pulses is made with a quadratic 
detector, the quantum uncertainty in phase by itself has no 
direct effect on measurement. However, it is the reason of 
at least two undesirable consequences, to say nothing of 
interference experiments, where the phase stability has 
primary importance.  

First, the spread in the phase unavoidably leads to 
corresponding frequency destabilization. Within the 
framework of classic approach analogous phenomenon has 
been considered in Ref. 15. The propagation of the 
fundamental soliton with its periodical amplification for the 
compensation of losses in fiber has been analyzed in this 
paper. Resulting spontaneous noise is amplified along with 
the soliton. The noise is accumulated and increased, and the 
first symptom of its presence is the random deviation of the 
carrier frequency accompanying with the changes of the 
propagation velocity that is very undesirable in the  

information communication links, for which, properly, the 
optical solitons are intended. Thus some limiting mean free 
path length has arisen which limits a range of action of the 
information channel.  

So, the variance of the frequency fluctuations in classic 
approximation is 15  

 

<Δω2>cl = eγt — 1) A/ 3 n0 g Aγt/ 3 n0 , (4.2) 
 

where γ is the increment of an amplification which 
compensates for the losses and A = (n0 – 1) |c|1/2/2 is the 

normalized amplitude of the soliton (see Eq. (2.17)).  
Simple relation (4.2) convenient for practical 

calculations can be generalized with an account of quantum 
fluctuations. It can be made by virtue of the correspondence 
principle16 valid under conditions of linear amplification. 
However, it should be taken into account that additional 
"noising" due to losses (in the case of their complete 
compensation the increment must be doubled) as well as 
vacuum fluctuation (the factor of 1/2). As a result we obtain  

 

<Δω>qu g A(2γt + 1/2) / 3n0 . (4.3) 
 

According to the estimates of the Ref. 15 the random 
deviations of frequency must be manifested for distances 
exceeding 1000 km.  

Secondy the unpleasant consequence of the growth of 
the phase uncertainty is its destructive effect on production 
of the squeezed states.  

As is well known, quantum squeezed states are 
associated with the possibility of suppression of the shot 
noise of photodetecting and corresponding improvement of 
the limiting characteristics of various systems using photons 
as carriers of information (see, for example, Refs. 10 
and 17–20). One of the most promising ways of producing 
such states are the optical solitons.3–10  

Let us introduce the quadrature component  
 

X = ϕe–iϕ + ϕ+eiϕ , (4.4) 
 

where ϕ is the adjustable phase parameter which optimizes 
the degree of suppression of the variance of quadrature 
fluctuations:  

 
<ΔX 2> ≡ <X 2> — <X>2 ≡ 1 + (<ϕ2>exp(–i2ϕ) + 

 

+ <ϕ+ϕ> — <ϕ>2exp(–i2ϕ) — ⏐<ϕ>⏐2 + 
 

+ complex conjugate term) . (4.5) 
 

A criterion for the squeezed state is the fulfilment of 
the condition <Δx2> < 1, i.e., the decrease of the variance of 
the fluctuation down to the value than in vacuum.  

For the fundamental soliton we have  
 

<ψ⏐ϕ2(x)⏐ψ> g [(2α
0
2 exp( — n0)/⏐c⏐q

2 
1/2] × 

 

∑
n

 {(n
0
n(n + 1)2/[(n(n!) (n + 1)!]–1/2} × 

 

ґ exp{itc2(n + 1)2/2 + [(i2p0(x — x0 — p0 t) — 
 

— (x — x0)
2Δp2] /q2}⌡⌠psh–1(2πp/ ⏐c⏐) × 

 

× exp{{—[Δp–2 + i4t + 4t2n(n + 2)Δp2] p2 + 
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+ i2(n + 1) (x — x0 — 2p0t)p}/q2}dp , (4.6) 
 

where  
 

q2 = 1 + i2tΔp2 . 
 

The derivation of this relation is presented in 
Appendix 4. Let us note only that the sign of the 
approximation is referred to condition n0 . 1.  

Analyzing Eq. (4.6), we can conclude that the absolute 
value of <ϕ2> decays with t much more steeply than <ϕ+ϕ> 
which is determined according to Eqs. (3.1) and (3.2). This is 
connected first of all with the phase term exp[itc2(n + 1)2/2] 
entering in Eq. (4.6) . Really,  
 

∑
n

 [n
0
nexp(—n0)/n!] exp[(itc2(n + 1)2/ 2] g 

 

g q–1/2exp[itc2(n0 + 1)2 / 2q] , q = 1 — itc2n0 , (4.7) 
 

and increase of t is accompanied by decrease of the absolute 
value given by Eq. (4.7). In these calculations we have taken 
n0 g 1 and used the Poisson model distribution given by 

Eq. (B.4).  
But faster decay of ⏐<ϕ2>⏐ in comparison with 

<ϕ+ϕ> according to Eq. (4.5), reduces the maximum squeeze 
ratio. Thus, effective generation of squeezed states at the 
initial stage of nonlinear propagation3–11 must be followed by 
their degradation. We can separate out at least two reasons of 
such a behavior which consist in the following.  

Within the framework of the considered tetraphoton 
model of nonlinear interaction, when the soliton is passing 
through the fiber, the regular component pumps the 
parametrically amplified vacuum fluctuations. In addition, the 
depletion of pumping occurs due to pumping over the photons 
in the noise component. This fact gives rise to the degradation 
of squeezing. The same effect takes place, for example, in the 
process of triphoton parametrical amplification.21  

Second reason is more important and is manifested at the 
initial stage of propagation. It consists in growth of the phase 
fluctuations of the soliton, i.e., the pumping, whose 
destructive effect is analogous to the generation of squeezed 
states in parametric amplifiers studied in Refs. 23–24 with the 
only difference that synchronous amplification has been 
analyzed there. In our case the interaction is asynchronous in 
principle due to the nonlinear run–on of the of pumping 
phase. One can read about this in ample detail, for example in 
Ref. 13.  

To evaluate analytically the effect of phase fluctuation 
let us use the following simple model. Within the framework 
of quasistatic approximation of the given channel the variance 
of the quadrature component at the top of the soliton is8–10  

 

<ΔX 2(t, 0)> = 1 — 2Ψ sin2
 (ϕ — Ψ/ 2) + 4Ψ2

 sin2(ϕ  — Ψ/ 2). 
 (4.8) 

 

Optimum squeezing, i.e., minimisation of <Δx2> can be 
obtained by adjustment of the phase parameter ϕ = ϕ0 such that  

 

tan(2ϕ0 — Ψ) = Ψ–1 . (4.9) 
 

However, the quantum spread in the soliton phase makes 
it impossible to satisfy the last condition. Thus we can 
conclude that even in the optimum case we have 

 

<ΔX 2(t, 0)>min g 1 — 2Ψ sin (2ϕ0 + <ΔΘ2>1/2 — Ψ) +  
 

+ 4Ψ2 sin2 [((2ϕ0 + <ΔΘ2>1/2 — Ψ)/ 2] , (4.10) 

 
where <Δθ2> is given by Eq. (4.1).  

Results of numerical calculation of the minimum 
squeeze ratio of the quadrature quantum fluctuations are 
shown in Fig. 4. It can be seen that effective production 
of squeezed states of the optical soliton is possible only 
for the fixed range of variations of its mean free path 
length and when they became large they influence 
destructively. However with the use of the high–
intensive solitons with n0 > 105 the degree of suppression 

of the fluctuations can be very high and does not limited 
by the considered effects. Nevertheless, the quantum limit 
is important from the principal point of view.  

 
CONCLUSION  

 
So, we have established that quantum effects 

accompanying the propagation of Schrodinger's soliton in 
the natural nonlinear lightguide lead to its (the soliton) 
graduate but steady annihilation. We have also clarified 
the tetraphoton nature of this phenomenon. For practical 
application of the obtained results we will estimate the 
maximum possible mean free path length of the soliton in 
fiber.  

In accordance with Eqs. (2.15), (3.1) and (3.2) the 
fundamental soliton being adequately described 
classically, i.e., with the envelope in the form of 
hyperbolic secant of (2.17) can exist in fiber only when 
⏐c⏐ < Δp. Taking in the limiting case, corresponding to 
minimal spreading, Δp g ⏐c⏐ from Eq. (3.4) we have  

 

tlim = 21/2/n0c
2 ≡ 21/2n0T/ 8π g n0T/ 20 . (5.1) 

 

Here the period of the soliton T = 8π/(n0c)
2 is the time 

required for the nonlinear run–on of the phase to reach 
2π.  

Taking into account the fact of practically complete 
annihilation of the soliton as a result of growth of the 
noise with double broadening of its average intensity 
profile, established by us, we can conclude that tlim really 

determines maximum possible propagation path.  
Furthermore, because in real situations n0 . 1, tlim 

is much greater than T. This means that the amplitude 
quantum effects will be manifested only for the very long 
mean free path lengths or in the media with high degree 
of nonlinearity, i.e., under conditions when other factors 
such as losses and amplification necessary for their 
compensation,13,15 fiber inhomogenities,4 and dispersion 
effects of the third and higher orders as well as finite 
time of nonlinear response25 can have significant 
destabilizing effect. Nevertheless, the revealed quantum 
annihilation of the soliton emposes principal limitations 
on the maximum length of the propagation path that, 
undoubtedly, is important.  

The above discussion have touched upon only the 
average intensity and amplitude noise. The phase 
fluctuations increase faster. And with an account of the 
random deviation of carrier frequency, we obtain the 
pattern of the complete destabilization of the soliton. 
This is the quantum uncertainty that is the reason of all 
this. It should be also noted that in the process of 
detecting ultrashort pulses it is necessary to account the 
interesting peculiarities of the photocount statistics.26  
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APPENDIX A: DETERMINING THE AVERAGE  

PULSE AMPLITUDE 
 

Appendix A explains the derivation of relation (2.15). 
So, in accordance with Eq. (2.7), we have  

 

<ψ⏐ϕ(x)⏐ψ> = ∑
n′

 ∑
n

 
an′*an⌡⌠ ⌡⌠ gn′* (p′)gn(p) × 

 

× exp(it[(E(n′, p′) – E(n, p)])<n′, p′ ⏐ϕ(x)⏐n, p> d dp′ . (A.1) 
 

The results of calculation of the matrix element 
<n′, p′⏐ϕ(x)⏐|n + 1, p> gives11  

 

<n′, p′, ⏐ϕ(x)⏐ n + 1, p > = δnn′
 (2π)–1 [(n(n + 1)]1/2 × 

 

× (n — 1)! n! ⏐c⏐2n–1/2 × 
 

× 
⎩
⎨
⎧

⎭
⎬
⎫

∏
r=1

n

 [(p — p′)2 + c2(2n — 2r + 1)2/4]–1  × 

 

× exp{i[(n + 1)p – np′]x} g (A.2) 
 

g δnn′
 2–1⏐c⏐–1/2 [(n(n + 1)]1/2 ×  

 

× exp{i[(n + 1)p – np′] sech [π(p — p′)/⏐c⏐] . (A.3) 
 

Approximate expression in Eq. (A.3) appears in going to 
the limit n → ∞ and really it can be used when n > 10 – 500 
depending on the ratio of the parameters ⏐c⏐ and p – p′.  

By substituting Eq. (A.3) into Eq. (A.1) and 
introducing the new variables 

 

p1 = (p — p′)/ 2, p2 = (p + p′)/2 . (A.4) 
 

With an account of Eq. (2.13) we obtain  
 

<ψ⏐ϕ(x)⏐ψ> = ∑
n

 [⏐c⏐–1n(n + 1)]1/2 × 

 

ґ an*an+1 π
–1/2 Δp–1 exp[itñ2n(n + 1)/4] × 

 

× ⌡⌠ ⌡⌠ exp{(—[p
1
2 + (p2 — p0)

2/Δp2]} + 

 

+ i{[2p1(n + 1/2) + p2) (x — x0) — t[4p1p2(n + 1/2) – 
 

— p
1
2 — p

2
2} sech (2πp/⏐c⏐) dp2 dp1 . (A.5) 

 

Integrating over p2 and omitting the subscript on p1 

we will obtain Eq. (2.15).  
 

APPENDIX B: DETERMINATION OF THE SHAPE  
OF THE PULSE ENVELOPE  

 
This section is devoted to the derivation of 

relations (3.1) and (3.2) and their transformation to a form 
convenient for practical calculations.  

In accordance with Eq. (2.7), we have  
 

<ψ⏐ϕ+(x) ϕ(x)⏐ψ> = ∑
n′

 ∑
n

 
an′
*an⌡⌠ ⌡⌠ gn′

* (p′)gn(p) × 

 

× exp{it[E(n′, p′) – E(n, p)]}<n′, p′⏐ϕ+(x)ϕ(x) ⏐n, p> dp dp′ . 
 (B.1) 
 

and11  
 

<n′, p′ ⏐ϕ+(x) ϕ(x)⏐ n, p> = δnn′
 (2π)–1 × 

 

× c2(n–1) (n!)2 exp(in(p – p′)x) × 
 

× ∏
j=1

n–1

 [(jc)2 + (p — p′)2)–1 | (B.2) 

 

g δnn′
[n2 exp{in(p – p′)x}/2⏐c⏐] × 
 

× (p — p′) sh–1[(π (p — p′)/⏐c⏐] . (B.3) 
 

Approximate expression in Eq. (B.3) is valid when 
n . 1.  

Further procedure of transformation is analogous to the 
procedure described in Appendix A: by introducing the 
variables of the type given by Eq. (A.4) and by integrating 
over p2 we obtain Eqs. (3.1) and (3.2) which, however are not 

very convenient for practical calculations. Hence, we will 
transform them using the condition n0 . 1. Now the Poisson 

distribution can be replaced by the Gaussian (see, for example 
Ref. 14):  

 

exp (— n0)n0
n/n! g (2πn0)

–1/2 exp[(—(n — n0)
2/2n0] , (B.4) 

 

and summation can be replaced by integration over n between 
the infinite limits and after integrating we will obtain  

 

<N(x)> g 4n0⏐c⏐–1 ⌡⌠
0

∞

 p[(U + n0 — V 

2/n0)cos(U/V) — 

 

— 2V sin(U/V)] U–5/2 sh–1(2πp/⏐c⏐ × 
 

× exp{[(n0(1 — U) — V 2/n0]/2U — p2/Δp2}dp , (B.5) 

 
U = 1 + 8 n0 t

2p2 Δp2 , V = 2 p n0(x — x0 — 2p0t) . 
 

In spite of apparent cumbersome form this relation is 
more convenient for numerical estimate due to the lack of 
summation over n.  
 

APPENDIX C  
 

Here we will derive relation (3.6). So we have 
 
<ψ⏐ϕ+(x) ϕ+(x) ϕ(x) ϕ(x)⏐ψ> =  
 

= ∑
n′

 ∑
n

 an′
*an⌡⌠ ⌡⌠ gn′

* (p′) gn(p)exp{it[E(n′, p′) – E(n, p)]} × 

 
× <n′, p′⏐ϕ+(x)ϕ+(x)ϕ(x)ϕ(x)⏐n, p> dpdp′. (C.1) 
 

The matrix element can be written as  
 

M ≡ <n′, p′⏐ϕ+(x) ϕ+(x) ϕ(x) ϕ(x)⏐n, p> =  
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= δnn′
(n!)–1  ⌡⌠ ⌡⌠ fnp′

*  (x1′, x2′, ..., xn′ fnp (x1, x2, ..., xn) × 

 

×< 0⏐ϕ(x1′) ... ϕ(xn′) ϕ+(x1) ... ϕ+(xn)⏐0>dx1′  ... dxn′  dx1 ... xn (C.2) 
 

 = δnn′
n(n — 1) ⌡⌠ fnp′*  (x, x, x1, ..., xn–2) ×  

 

× fnp(x, x, x1, ..., xn–2) dx1 ... dxn–2 . (C.3) 
 

Substituting Eq. (2.9) into Eq. (C.3) gives (the 
symbol δnn′

 we will omit further assuming n = n′)  
 

M = Nn
2n(n — 1)⌡⌠ exp 

⎣
⎢
⎡
i(p

 
—

 
p′) × 

 

× ∑
j=1

n–2

 xj — 2⏐c⏐∑
j=1

n–2

 ⏐x — xj⏐ —  

 

–⏐c⏐ ∑
1≤i<

 ∑
j≤n–2

 

⎦
⎥
⎤⏐xi

 
—

 
xj⏐  dx1 ... dxn–2 . (C.4) 

 

By virtue of the symmetry of function fnp the 

integration can be carried out only over the region –
∞ ≤ x1 ≤ x2 ≤ ... ≤ xm ≤ x ≤ xm+1 ≤ xm+2 ≤ ...xn-2 ≤ ∞ since 

the integrals over the other regions can be obtained only by 
various commutations of x and xj which have no effect on 

the function fnp. Therefore, Eq. (C.4) can be represented in 

the form  
 

M = Nn
2n! exp(i2x(p–p′)) ∑

m=0

n–2

 
 ⌡⌠
–∞

x

 dxm⌡⌠
–∞

xm

 dxm–1 ... × 

 

× ⌡⌠
–∞

x2

 dx1⌡⌠
x

∞

 dxm+1 ⌡⌠
xm+1

∞

 dxm+2 ⌡⌠
xn–3

∞

 dxn–2 × 

 

× exp
⎣
⎡

 

 

i(p — p′) ∑
j=1

n–2

 xj + 2⏐c⏐)∑
j=1

m

  xj — 2⏐c⏐ × 

 

× ∑
j=m+1

n–2

 xj + 2⏐c⏐ (n — 2m — 2)x + ⏐c⏐ × 

 

× ∑
j=1

n–2

 (n — 2j — 1)(xj)⎦
⎤

 

 

. (C.5) 

 

The integration gives  
 

M = N n
2 n! exp(in(p – p′)x) ⏐c⏐–(n–2) × 

 

× ∑
m=0

n–2

 { m! (n — 2 — m)!) ∏
r=1

m

 [(n — r + i(p — p′)/⏐c⏐] × 

 

× ∏
r=1

n–2–m

  [(n — r — i(p — p′)/⏐c⏐] }
 –1

 . (C.6) 

 

It should be noted that the sum in Eq. (C.6) can be 
represented in the form  

 

∑
m=0

n–2

 ... = ∏
r=2

n–1

 [(r2 + (p — p′)2/c2)–1]∑
m=0

n-2

 [(m! (n — 2 — m)!]–1 × 

 

× ∏
r=2

m+1

 [(r — i(p — p′)/⏐c⏐] ∏
r=2

n–1–m

 [(r + i(p — p′)/⏐c⏐] . (C.7) 

 

in addition 
 

∑
m=0

n–2

 [ ]m! (n — m)! - 1∏
r=2

m+1

[ ]r — i(p — p′)/⏐c⏐  × 

 

 

× ∏
r=2

n–1–m

[ ]r + i(p — p′)/⏐c⏐  = ∑
m=1

n–1

 m (n — m) . (C.8) 

 

But  

 

∑
m=1

n–1

 m (n — m) = n(n2 — 1)/6 . (C.9) 

 

Thus, taking Eq. (2.10) into account we have  

 

M = (12π)–1(n2 — 1) (n!)2⏐c⏐ exp[in(p – p′)x] × 
 

× ∏
r=2

n–1

[ ]r2 + (p — p′)2/c2 –1 . (C.10) 

 
As n → ∞, finite product in Eq. (C.10) becomes 

infinite and, in its turn, can be written in the form of 
hyperbolic sine:  

 

πx ∏
j=1

∞

(1 + x2/j2) = sh πx . (C.11) 

 

As a result we have  
 

<n, p′⏐ϕ+(x) ϕ+(x) ϕ(x) ϕ(x)⏐n, p> g  
 

g [ ]n2(n2 — 1) (p — p′)/12  [ ]1 + (p — p′)2/c2  × 
 

× sh– 1[ ]π(p — p′)/⏐c⏐  ein(p – p′)x . (C.12) 
 

By substituting this relation into Eq. (C.1), by going 
over to new variables of the form given by Eq. (A.4), and 
by integrating over p2 we obtain Eq. (3.6).  

 
APPENDIX D 

 
Here the necessary explanations of the derivation of 

relation (4.6) are given. So, we have  
 

<ψ⏐ϕ2(x)⏐ψ>= 

= 
∑

n

an′
*an+2 

⌡⌠⌡⌠
gn′
* (p′) gn + 2(p) <n, p′⏐ϕ2(x)⏐n + 2, p>× 

 

× exp it [E(n, p′) – E(n+2, p)] dp dp′ . (D.1) 
 

The matrix element can be written as  
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<n, p′⏐ϕ2(x)⏐n + 2, p>=[ ](n + 2) (n + 1) 1/2

⌡⌠
fnp ′ *  (x1, ..., xn) × 

×fn+2, p(x1, ..., xn, x, x)dx1 ... dxn =(n + 2)(n + 1) 

1/2NnNn+2n! × 
 

× ∑
m=0

n

 

⌡⌠
–∞

x

dxm⌡⌠
–∞

xm

dxm – 1 ...⌡⌠
–∞

x
2
dx1⌡⌠

x

∞

dxm + 1 × 

 

× 
⌡⌠

xm+1

∞

dxm + 2 ... ⌡⌠
xn–1

∞

dxn exp
⎣
⎢
⎡
i2px

 
+
 
i(p — p′)\i\su(j=1,n, xj + 

 

+ (⏐c⏐/2) ∑
j=1

n

 (n — 2j + 1) xj + 

 

+ (⏐c⏐/2) ∑
j=1

m

 (n — 2j + 3) xj + (⏐c⏐/2) × 

 

× ∑
j=m+1

n

 (n — 2j — 1) xj + 
⎦
⎥
⎤⏐c⏐ (n

 
—

 
2m) x  =  

 

= [(n + 2)(n + 1)]1/2NnNn+2n! exp{x[n(p – p′) + i2p]} × 
 

× ∑
m=0

n

 ∏
r=1

m

 {[ ⏐c⏐ (n — r + 1) + i(p — p′)]r}–1
 × 

 

× ∏
r=1

n–m

 {[⏐c⏐(n — r + 1) — i(p — p′)] r}–1
 . (D.2) 

 

The sum in Eq. (D.2) can be represented in the form  
 

∑
m=0

n

...  = ∏
r=1

n

 [(r2 + (p — p′)2/c2]–1 × ∑
m=0

n

 [(m!(n — m)!]–1 ×) 

 

× ∏
r=1

n

 [(r — i(p — p′)/⏐c⏐] ∏
r=1

n–m

 [(r + i(p — p′)/⏐c⏐] =  

 

= (n + 1)/∏
r=1

n

 [(r2 + (p — p′)2/c2] . (D.3) 

 

Thus we obtain 
 

<n, p′⏐ϕ2(x)⏐n + 2, p> = (2π)–1(n + 1)2 [(n + 2)/n]1/2 × 
 

× exp(ix[(n + 2)p – np′]) ∏
r=1

n

 [1 + (p — p′)/r2c2]–1 . (D.4) 

 

In going over to the limit n → ∞ (when n0 . 1) we 

derive  
 

<n, p′⏐ϕ2(x)⏐n + 2, p> g 2–1(n + 1)2 [(n + 2)/n]1/2 × 
 

× exp(ix[(n + 2)p – np′])(p — p′)/⏐c⏐] sh[π(p — p′)/⏐c⏐]. 
 

 (D.5) 
 

By substituting Eq. (D.5) into Eq. (D.1) and by 
integrating over one of the variable we obtain Eq. (4.6).  
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