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The efficiency of the phase control of a laser beam in a nonlinear medium is 
determined as a function of the number of the wavefront aberrations, reproduced by 
the corrector. This investigation is performed for a wide range of the parameters of 
the medium and the beam.  

 
A flexible mirror, whose design is determined by the 

corrected distortions, as a rule, serves as a controlling element 
in the adaptive system of phase control of a beam. In order to 
compensate for the lowest–order aberrations, viz., tilts, 
defocusing, and astigmatisms, mirrors with 4–6 degrees of 
freedom are used,1,2 while to compensate for the higher–order 
distortions, the number of the degrees of freedom increases and 
may amount to 37–58 (Refs. 3 and 4).  

In this paper we determine an optimal basis for 
control by mirror, intended for compensation for the 
thermal blooming. Results of the analogous investigations 
in the class of Zernike polynomials have been published 
in Refs. 5-7. In accordance with the data of Ref. 5, the 
correction of the lowest–order aberrations 

provides the control efficiency of the order of 80% of the 
value obtained with the use of an ideal corrector (a 
corrector which does not impose any restrictions on a given 
phase shape). According to Ref. 6 the correction of tilts, 
defocusing, and astigmatism ensures an efficiency of ~40% 
of the attainable maximum. Since the authors of Refs. 5–7 
examined the compensation for thermal blooming under 
conditions of different parameters of the beam and the 
medium one can assume that the choice of the optimal 
control basis depends on the conditions of beam 
propagation. In order to teslify the above assumption as 
well as to determine an optimal basis for different 
conditions, in this paper we examine the compensation for 
self–action for a wide range of the thermal lens parameters.  

 

 
FIG. 1. The resulting values of the focusing criterion J as functions of the number of 
aberrations, reproduced by the corrector: N = 0 (without correction), N = 1 (tilt), N = 2 
(tilt and defocusing), N = 3 (tilt, defocusing, and astigmatism), N = 4 (tilt, defocusing, 
astigmatism, and coma), and N = 5 (tilt, defocusing, astigmatism, coma, and spherical 
aberration). The parameters: a) R

ν 
= –10 and Z

nl 
= 0.5 Z

d
 (curve 1), R

ν 
= –20 and 

Z
nl 

= 0.1 Z
d
 (curve 2), and R

ν
= –250 and Z

nl
 = 0.01 Z

d
 (curve 3); b) R

ν 
= –30 and Z

nl 
= 0.5 

Z
d
 (curve 1), R

ν 
= –90 and Z

nl 
= 0.1 Z

d
 (curve 2), and R

ν 
= –700 and Z

nl 
= 0.01 Z

d
.  

  
 

The control of the beam is implemented based on an 
algorithm of cross–aperture sounding. As a goal function of 
control we employ the focusing criterion  

 

J = 
1
P

0
 
⌡⌠⌡⌠

 ρ(x, y) I(x, y, z
0
) dxdy) , (1) 

 
which has the meaning of the relative portion of light 
power, which falls within an aperture of radius S

t
. In the  

above equation P
0
 is the total beam power, ρ is the aperture 

function, and ρ(x, y) = exp(–(x2 + y2)/S
2

t). We consider 

the interaction between the radiation and the medium in the 
approximation of the stationary wind refraction.2 We have 
chosen the following geometry of the problem. The beam 
propagates along the OZ axis. The wind velocity direction 
coincides with the OX axis (the thermal lens is symmetric 
about the XOZ plane). The wind velocity is constant, and 
the medium nonlinearity is described by the parameter  
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R
ν
 = 

2k2a
0
3α I

0

n
0
 ρ C

p
V (∂n/∂T) , (2) 

 
where a

0
 is the initial beam radius, I

0
 is the axial power 

density in the plane Z = 0, V is the wind velocity, and k is 
the wave number. The rest of the designations are standard 
and correspond to those used in Ref. 2. The diffraction 
length Z

d 
= ka2

0
 is the spatial scale of the problem along the 

axis of beam–propagation. The correction is considered on 
the path Z

0
 = 0.5 Z

d
, and the thickness of the nonlinear 

layer is varied from Z
nl
 = 0.01 Z

d
 to Z

nl
 = 0.5 Z

d
.  

The dependence of the resulting values of the criterion J 
on the number of Zernike polynomials reproduced by the 
corrector is shown in Fig. 1. The data were divided into two 
groups. Fig. 1a a corresponds to the control of small 
distortions (small values of the parameter R

ν
 or a small  

thickness of the nonlinear layer Z
nl
) and Fig. 1b corresponds 

to the control of great nonlinear distortions. In both figures 
the broken line stands for the diffraction limited values of the 
criterion obtained for the path length under consideration. 
Table I gives the data which characterize the relative 
contribution of the individual aberrations. Here those values 
are accepted as 100%, which have been obtained under 
condition of complete reproduction by the corrector of all 
polynomials under consideration (up to the spherical 
aberration, inclusively). One can see that under conditions of 
small distortions (Z

nl 
= 0.5 Z

d
 and ⏐R

ν
⏐ ≤ 10; Z

nl 
= 0.1 Z

d
 

and |R
ν
| ≤ 20; Z

nl 
= 0.01 Z

d
 and |R

ν
| ≤ 250) the compensation 

for the lowest–order aberrations, i.e., tilts and defocusing, 
provides a high quality of correction of the thermal lens effect. 
At the same time, the correction of the higher–order 
aberrations makes it possible to increase the control efficiency 
by not more than 5%.  

 
TABLE I. The relative control efficiency (%) as a function of the number of aberrations reproduced by the corrector. 
 

 Thermal lens parameters  
Corrected aberrations R

ν = –10 
Z

nl 
= 0.5 Z

d
 

R
ν = –20 

Z
nl 

= 0.1 Z
d
 

R
ν = –250 

Z
nl 

= 0.01 Z
d
 

R
ν = –30 

Z
nl 

= 0.5 Z
d
 

R
ν = –90 

Z
nl 

= 0.1 Z
d
 

Without correction 56 47 49 27 16 
Tilt  58 50 47 70 40 
Tilt and defocusing  95 99 97 81 68 
Tilt, defocusing, and 
astigmatism  95 99 99 81 77 

Tilt, defocusing, 
astigmatism, and coma 

 
100 

 
100 

 
100 

 
100 

 
98 

Tilt, defocusing, 
astigmatism, coma, and 
spherical aberration 

 

100 

 

100 

 

100 

 

100 

 

100 

 
TABLE II. The resulting values of the focusing criterion J, obtained when there exist predistortions of the phase 
(Eq. (2)).  
 

Phase predistortions – (2) – (2) – (2) 
 Thermal lens parameters 

Corrected aberrations 
R

ν
 = –20 

Z
nl 

= 0.5 Z
d
 

R
ν
 = –30 

Z
nl 

= 0.5 Z
d
 

R
ν
 = –90 

Z
nl 

= 0.01 Z
d
 

Without correction 0.19 – 0.10 – 0.09 – 

Tilt  0.30 – 0.26 – 0.23 – 

Tilt and defocusing  0.40 0.45 0.30 0.33 0.39 0.40 
Tilt, defocusing, and 
astigmatism  0.41 0.45 0.30 0.33 0.44 0.45 

Tilt, defocusing, 
astigmatism, and coma 

 
0.46 

 
0.46 

 
0.37 

 
0.38 

 
0.56 

 
0.57 

Tilt, defocusing, 
astigmatism, coma, and
spherical aberration 

 
 

0.46 

 
 

– 

 
 

0.37 

 
 

– 

 
 

0.57 

 
 

– 

 

As the nonlinear distortions becomes greater and the 
thickness of the thermal lens becomes smaller the contribution 
of the higher–order polynomials increases. Thus, for 
Z

nl
 = 0.5 Z

d
 and ⏐R

ν
⏐ = 30, the compensation for the 

astigmatism, coma, and spherical aberration enables us to 
increase the control efficiency by 19%, and for Z

nl
 = 0.1 and 

⏐R
ν
⏐ = 90 it is increased by 32%.  

Note that the contribution of the spherical 
aberration is very insignificant in the above–indicated 
range of the parameters. Let us consider the employment 
of this polynomial in ample detail. In so doing we 
conventionally divide the formed phase surface into two  

regions, i.e., a defocusing region at the center described by the 
equation ϕ

c
(x, y) = –α(x2 + y2), and the focusing region 

ϕ
f
(x, y) = α(x2 + y2)2, the coefficient α being varied in the 

process of control. It was found out in the numerical 
experiments that the effect of the region ϕ

f 
on the 

compensation for the thermal lens is analogous to the effect of 
focusing. For this reason, the variations of the shape of the 
defocusing region ϕ

c
 are of interest in order to determine ϕ

c
 for 

which a maximum efficiency of the adaptive control is 
attained. We have examined the defocusing regions  

ϕ
c
(x, y) = α ( )exp(—x) + exp(—y)  , (3) 
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ϕ
c
(x, y) = α ( )exp(—x2) + exp(—y2)  . (4) 

 

We have found out that, when ϕ
c
 is given a priori in 

form (4), the control efficiency for the lowest–order 
aberrations increases (Table II). In this case the resulting 
values, obtained with the use of all polynomials considered, 
remain without changes. An assignment of ϕ

c
 in form (3) does 

not lead to any improvement of the correction quality.  
In conclusion let us emphasize once more that for small 

thermal distortions of the beams it is quite sufficient to use for 
the adaptive control the corrector, which would reproduce 
only the lowest–order aberrations, i.e., tilt and defocusing. As 
the nonlinear distortions became greater it is necessary to 
employ the controlling element with the larger number of 
degrees of freedom.  
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