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A technique is developed to solve the problems of radiation transfer in the 

"atmosphere–nonorthotropic surface" system based on the use of spatial frequency 
characteristics and influence functions. An optical transfer operator of this system is 
constructed, its kernel being the linear influence functions and spatial frequency 
characteristics. 

 
From the point of view of ecological studies aimed at 

monitoring of the environment the methods of remote 
sensing of the atmosphere–underlying surface (land, water 
surface, and clouds) system including spaceborne techniques 
are of particular interest. 

This paper formulates mathematical models which 
make it possible to study in detail the processes of 
formation of radiation fields in the atmosphere–
nonorthotropic surface system (ANOSS) based on numerical 
experiments. The same can be done for the atmosphere–
Lambertian surface system (ALSS) since it is a particular 
case of such a system. The technique based on the use of 
spatial frequency characteristics (SFC) and the influence 
functions (IF) is generalized and developed in application to 
the problems dealing with the nonorthotropic homogeneous 
and inhomogeneous boundaries.1-3 

The mathematical apparatus for constructing the SFC 
and IF models is based on the expansion series of the 
perturbation theory and on the theory of generalized solutions 
of kinetic equations.1,4-6 The problem of seeking for the 
complete solution of this problem allowing for the nonlinear 
approximations that take into account multiple reflections 
from the surface is reduced to seeking for the fundamental 
solution of a linearized problem and to calculating nonlinear 
functionals, whose kernels are the corresponding SFC's and 
IF's. As a result we can find an explicit relationship between 
the measured radiation characteristics and the parameters of a 
surface being sensed, which determine the optical transfer 
operator (OTO) of the system. 

 
FORMULATION OF THE PROBLEM 

 
The problem of solar radiation propagation in the 

system atmosphere–surface (SAS) can be divided into two 
classes of problems: 

1) the class of problems dealing with the systems in 
which the land surface is described as an isotropically 
reflecting surface (Lambertian boundary) (ALSS); and, 

2) the class of problems dealing with the systems in 
which either the land or oceanic surface is described as an 
anisotropically reflecting surface (ANOSS). 

The direction of the radiation propagations is described 
by the vector s = {μ, ϕ}, where μ = cosϑ and μ ∈ [–1, 1] on 
the unit sphere Ω = [–1, 1]×[0, 2π], where ϑ ∈ [0, 180°] is 
the zenith angle, counted from the positive direction of the 
z axis, and ϕ ∈ [0, 2π] is the azimuth angle. The direction 
ϕ = 0 is assumed to lie in the plane of the solar vertical 
circle, i.e., the solar radiation is incident on the boundary 
of the layer along the direction s

0
 = {μ

0
, ϕ

0
}, at the zenith  

angle ϑ
0
 ∈ [0, 90°], μ

0
 = cosϑ

0
, and its azimuth being ϕ

0
 = 0. 

For the downwelling transmitted radiation a hemisphere of the 
directions Ω+ = {(μ, ϕ): μ > 0} is introduced and the other  

Ω– = {(μ, ϕ): μ < 0} is introduced for the upwelling reflected 

radiation Ω = Ω+U Ω 
–. Just for clarity indices "+" and "–" 

are sometimes ascribed to the functions defined on the Ω+ and 

Ω 
- hemispheres, respectively. 

Spatial coordinates within a plane layer are described 
by the radius–vector r = {x, y, z}. For the horizontal plane 
it is r

⊥
 = {x, y}. A projection of the vector of the direction s 

onto the horizontal plane is given by 
s
⊥
 = {sinϑcosϕ, sinϑsinϕ}, the reference direction for the 

azimuth ϕ being the positive direction of the x axis. 
The boundary conditions are written in terms of the 

following sets: 
 

Γ
0
 = {(r, s): z = 0, s ∈ Ω+} and ΓH = {(r, s): z = H, s ∈ Ω–}. 

 
The law of reflection from the lower boundary of the system 
(z = H) is defined by the operator 
 

R
∧
F = 

1
π⌡
⌠
Ω

+

 
Φ(r

⊥
, z = H, s′) μ′ds′ 

 

for the case of Lambertian surface, or by the operator 
 

[R
∧

HΦ](s) = ⌡⌠
Ω

+

 
Φ(r

⊥
, z = H, s′) η(s, sΩ)dsΩ 

 

for a nonorthotropic surface (e.g., the Fresnel). 
The optical properties of the atmosphere are described by 

the vertical profiles of coefficients of extinction 
σt(z) = σs(z) + σabs(z), absorption σabs(z), and total scattering 

σs(z) = σa(z) + σm(z) that includes both the aerosol σa(z) and 

molecular σm(z) scattering components. Also the total 

scattering phase function 
 

γ(z, χ) = 
σa(z)

σs(z)
 γa(z, χ) + 

σm(z)

σs(z)
 γm(χ) 

 

is used to describe the optical properties of the atmosphere. 
In general, the latter value involves the aerosol γa(z, χ) and 

molecular γm(χ) = 3(1 – cos2χ)/(16π) components. 
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The integrodifferential operator of the kinetic equation 

K
∧
 ≡ D

∧
 – S

∧
 involves the transfer operator D

∧
 ≡ (s, grad) + σt(z) 

and the integral of collisions S
∧
Φ ≡ σs(z) ⌡⌠

Ω

Φγds′. 

In the case of a three–dimensional problem dealing with 
plane layers (when there are inhomogeneties in the horizontal 
planes) the transfer operator is written as follows: 

 

D
∧

 ≡ μ 
∂
∂z + sinϑ cosϕ 

∂
∂x + sinϑ sinϕ 

∂
∂y + σt(z) . 

 
In the case of a spatially one–dimensional problem 

(when the medium consists of horizontally homogeneous 

layers) the transfer operator D
∧

 is more simple 
 

D
∧

z ≡ μ 
∂
∂z + σt(z) ;  K

∧
z ≡ D

∧
z – S

∧
 . 

 

The integral Fourier transform over the horizontal 
coordinates can be introduced as follows: 
 

F[Φ](p) = ⌡⌠
–∞

+∞

 
Φ(r

⊥
) exp[i(p, r

⊥
)]dr

⊥
 = Φ

∨

(p) , 

 

where symbol "∨" denotes the resulting Fourier transform. 
When applied to the three–dimensional equation of radiation 
transfer through plane layers the Fourier transform results in a 
complex one–dimensional parametric equation of radiation 
transfer 
 

F[K
∧
Φ](p) = L

∧
(p)Φ

∨

(z, p, s) , 
 
where 
 

L
∧
(p) ≡ μ 

∂
∂z + σt(z) – i(p, s

⊥
) – S

∧
 , 

 
(p, s

⊥
) = px 

sinϑcosϕ + py 
sinϑsinϕ . 

 
Here p = {px, py} is the real parameter (the spatial 

frequency). 
The boundary problem in modeling the propagation of 

solar radiation (f
0
 ≡ πS

λ
σ(s – s

0
)) in the SAS can be written 

in the form 
 

{K
∧
Φ = 0 , Φ

Γ
0
 = f

0
 , Φ

ΓH
 = q(r

⊥
)R
∧

H
Φ (1) 

 

with the albedo (or emissivity) being either  
a) q = const or b) q(r

⊥
) ≠ const . 

 

This problem can be generalized to involve the case of 
radiation sources different from the sun, by introducing the 
functions F, f

0
, and fH 

 

0
0

( , ),

( , ),

( , ).
H

H H

F r s

f r s

qR f r s

∧

⊥Γ

∧∧

⊥Γ

⎧
Φ⎪

⎪
⎪

Φ =⎨
⎪
⎪
⎪Φ = Φ +
⎩

Κ =  

(2)

 

 

SEPARATION OF CONTRIBUTIONS FROM THE 

ATMOSPHERIC BACKGROUND AND FROM THE 

IRRADIANCE DUE TO REFLECTION FROM THE 

UNDERLYING SURFACE 
 

Let us make use of the linearity of the boundary 
problem (2) with respect to radiation sources. For this let 
us represent the total radiation field in the system as a 
superposition Φ = Φ0 + Φa + ΦaR with its components 

satisfying the following conditions. 
The direct (attenuated) solar radiation Φ0 is being 

sought for when solving the problem 
 

⎩⎪
⎨
⎪⎧ D

∧
zΦ

0 = 0 ,      

Φ0
Γ
0
 = [πS

λ
δ(s – s

0
)] ,

Φ0
ΓH

 = 0       

 (3)  

 
for the layer z ∈ [0, H], and Φ0 

≠ 0 for s=s
0
 solely. 

The atmospheric background radiation Φa is given by 

the solution of the problem with zero boundary conditions 
for the layer 

 

{K
∧

zΦa = [S
∧
Φ0] , Φa Γ

0
 = 0 , Φa ΓH

 = 0 . (4) 

 
The atmospheric radiation reflected from the boundary 

is given by the solution of the boundary problem with a 
source at the boundary z = H. 

 

⎩⎪
⎨
⎪⎧

K
∧
ΦaR = 0 ,              

ΦaR Γ
0
 = 0 ,              

ΦaR ΓH
 = R

∧
HΦaR

+  + [R
∧

H(Φ0 + Φa
+)] ,

 (5) 

 
which may be sought for in a more detailed form involving 

two components ΦaR = ΦaR
0  + ΦaR

g . 

The component FaR
0  here is the contribution from the 

atmospheric haze to the total flux produced due to scattering 
of directly attenuated solar radiation reflected from the 
boundary. It is determined by the solution of the problem 

 

⎩⎪
⎨
⎪⎧

K
∧
ΦaR

0 = 0 ,            

ΦaR
0 

Γ
0
 = 0 ,           

ΦaR
0 

ΓH
 = R

∧
HΦaR

0  + [R
∧

HΦ
0] .

 (6) 

 
The atmospheric scattering of the diffuse component of 

light scattered by the haze and reflected from the surfsce 

results in a component ΦaR
g  which is a solution of the problem 

 

⎩⎪
⎨
⎪⎧

K
∧
ΦaR

g = 0 ,            

ΦaR
g 

Γ
0
 = 0 ,           

ΦaR
g 

ΓH
 = R

∧
HΦaR

g  + [R
∧

HΦa 
+] .

 (7) 
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EQUATIONS FOR THE SFC IN THE CASE OF 

NONORTHOTROPIC BOUNDARY 
 
In the case of an arbitrary reflecting surface the 

contribution into the irradiance due to reflection from a 
surface is described by the boundary problem with a source 

E = R
∧

HΦ
0, which is the irradiance of the surface produced by 

the radiation of intensity Φ(0) = Φ0 + Φa from an isolated layer. 

Consider now the problem on calculating the 
irradiance Φq in a horizontally homogeneous system 

 

{K
∧
Φq = 0 , Φq Γ

0
 = 0 , Φq ΓH

 = qR
∧

HΦq + qE . 

 

By introducing a parametric series Φq = ∑
k=1

∞

 εk Φk we arrive at 

a system of recurrent problems, corresponding to the kth order 
of reflection from the underlying surface (k ≥ 1, Φ

0
 = E), 

 

{K
∧
Φk = 0 , Φk Γ

0
 = 0 , Φk ΓH

 = qR
∧

HΦk–1
 . (8) 

 

Let E = E(s) be independent of the coordinate r
⊥
. 

Then the linear approximation, relative to the albedo 

variations, Φ
∨

1
(z, p, s) = q

∨

(p)W
1
(z, p, s) can be written in 

terms of the SFS. Here W
1
 is the solution of the problem 

 

{L
∧
(p)W

1
 = 0 , W

1 Γ
0
 = 0 , W

1 ΓH
 = E(s) , (9) 

 

and the nonlinear terms of the series are found using the 
nonlinear SFC's Wk(z, pk,..., p1

, s) which are the solutions 

of the system of complex radiation transfer equations  
 

⎩⎪
⎨
⎪⎧

L
∧
(pk)Wk = 0 ,           

Wk Γ
0
 = 0 ,            

Wk ΓH
 = R

∧
HWk–1

(pk-1
,..., p

1
) .

 (10) 

 

The irradiance due to radiation reflected from the surface is 
calculated using the functional 

 

Φq = ∑
k=1

∞

 1

(2π)2k 
⌡
⌠

 

 

...

∞

–∞

 

⌡
⌠

 

 

q
∨

(p
1
)q
∨

(p
2
 – p

1
)...q

∨

(pk – pk–1
) × 

 

× Wk(z, pk,..., p1
, s) exp[–i(pk, r⊥)]dpk...dp

1
 . (11) 

 

If the albedo has the component q– = const then the 
irradiance can be divided into two components 

 

Φq = Φ(q
–

) + Φ(q
–

 q
∼
) , 

 

which are the solutions of the following problems: 
 

⎩⎪
⎨
⎪⎧Kz

∧
Φ(q

–
) = 0 , Φ(q

–
)

Γ
0
= 0 , 

Φ(q
–

)
ΓH

= q–R
∧

HΦ
(q
–

) + q–E ;

 (12) 

 

⎩⎪
⎨
⎪⎧ K

∧
Φ(q

–
 q
∼
) = 0 , Φ(q

–
 q
∼
)

Γ
0
= 0 ,                

Φ(q
–

 q
∼
)

ΓH
= q–R

∧
HΦ

(q
–

 q
∼
) + q~[R

∧
HΦ

(q
–

 q
∼
)R
∧

HΦ
(q
–

) + E] .

 (13) 

 
The first problem will be analyzed in the next section, 

while the solution of the second one may be presented in 
the form of a parametric series. The problem 

 

⎩⎪
⎨
⎪⎧K

∧
Φ

1
 = 0 , Φ

1 Γ
0
= 0, 

Φ
1 ΓH

= q–R
∧

HΦ1
 + q~Eq

 (14) 

 

is being solved within a linear approximation, with the 

source function Eq(s) ≡ R
∧

HF(q
–

) + E while nonlinear 

approximations (k ≥ 2) are related to each other recurrently 
 

⎩⎪
⎨
⎪⎧ K

∧
Φk = 0 , Φk Γ

0
= 0,    

Φk ΓH
= q–R

∧
HΦk + R

∧
HΦk-1

 .

 (15) 

 

The linear SFC W
1
(z, p, s) is being found from the 

problem 
 

⎩⎪
⎨
⎪⎧ L

∧
W

1
 = 0 , W

1 Γ
0
= 0, 

W
1 ΓH

= q–R
∧

HW
1
 + Eq .

 (16) 

 

Nonlinear approximations describing the irradiance due to 
the reflections from the underlying surface are expressed in 
terms of the nonlinear SFC's, which are the solutions of the 
recurrent system (k ≥ 2) 
 

⎩⎪
⎨
⎪⎧ L

∧
Wk(pk,..., p1

) = 0 , Wk Γ
0
= 0,      

Wk ΓH
= q–R

∧
HWk + R

∧
HWk-1

(pk-1
,..., p

1
) .

 (17)  

 

The functional representation of the component F(q
–
q
~
) has 

the same form as Eq. (11) for Φq. A principle difference 

between the cases of the Lambertian and non–Lambertian 
underlying surfaces, when accounting for the irradiance due to 
the reflections from the underlying surface, is that the 
nonlinear SFC's of Lambertian surfaces can be factorized over 
spatial frequencies and, as a result, can be expressed in terms 
of a linear SFC, while for the nonorthotropic reflection the 
factorisation is impossible and the linear SFC depends on the 
character of the surface irradiation. In the latter case the 
nonlinear SFC's are essentially influenced by the reflection law. 

In case the irradiance E(r
⊥
, s) is a function of the 

horizontal coordinate r
⊥
 (as in the case of the problem (2)) 

the linear approximation of the solution of system (8) will 
be given by the convolution 

 

Φ
∨

1
(z, p, s) = ( )q

∨

(p
0
)∗W

1
(z, p, p

0
, s)  (18) 

 

with the SFC W
1
(z, p, p

0
, s) which is a function of two 

parameters 
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⎩⎪
⎨
⎪⎧

L
∧
(p

1
)W

1
(p, p

0
) = 0 ,

W
1 Γ

0
= 0 ,       

W
1 ΓH

= E
∨

(p
0
, s) .  

 (19) 

 

One more parameter will also appear in the nonlinear 
SFC's: 
 

⎩⎪
⎨
⎪⎧

L
∧
Wk(pk,..., p0

) = 0 ,       

Wk Γ
0
= 0 ,            

Wk ΓH
= R

∧
HWk-1

(pk-1
,..., p

0
) .

 (20) 

 

and Eq. (11) will be slightly modified as follows: 
 

Φq = ∑
k=1

∞

 1

(2π)2k+1 

⌡
⌠

 

 

...

∞

–∞

 

⌡
⌠

 

 

q
∨

(p
0
)q
∨

(p
1
 – p

0
)...q

∨

(pk – pk–1
) × 

 

× Wk(z, pk,..., p0
, s) exp[–i((pk, r⊥)]dpk... dp

0
 . (21) 

 
THE NEUMANN SERIES IN THE CASE OF A 

HOMOGENEOUS BOUNDARY 
 
A system of equations (12) describes a one–

dimensional problem with a nonorthotropic boundary, 
homogeneously and anisotropically illuminated E = E(s). 

The analytical dependence on the parameter q– may be found 
in two different ways. 

First, taking into account that at q = q– = const the 

Fourier transform of the albedo is q
∨

 = (2π)2 q–δ(p), we 
obtain a particular expression from functional (11) 

 

Φ(q
–

)(z, s) = ∑
k=1

∞

 
q–k 

Wk
 0(z, s) , (22) 

 

where the functions Wk
 0(z, s) ≡ Wk(z, pk= 0,..., p

1
= 0, s) are 

the solutions of the recurrent system of problems (k ≥ 1): 
 

{K
∧

zWk
 0 = 0, Wk

 0
Γ
0
 = 0, Wk

 0
ΓH

 = R
∧

HWk–1
0  (23) 

 

with its initial approximation R
∧

HW
0
 0 = E(s). Equation (22) 

presents the sum of the Neumann series over the orders of 
reflection from the underlying surface with the succeeding 
multiple scattering in the atmospheric layer. Equations (23) 
are a particular case of the system (10), all of the spatial 
frequencies pk = 0, k = 1, 2, ... . 

Second, a series over the orders of re–reflections from 
the surface can be introduced from the very begining with 
its terms satisfying the system of equations 

 

{K
∧

zΦk = 0, Φk Γ
0
 = 0, Φk ΓH

 = q–R
∧

HΦk–1
 (24) 

 

with the initial approximation R
∧
Φ

0
 = E. It is obvious that 

Φk = q–kWk
 0, and, hence, we arrive at Eq. (22), which  

describes the iterative process over the orders of the reflection 
from the surface and allows one to make a complete account 
for multiple scattering in the atmospheric layer. 

It should be noted that in contrast to the case of the 
Lambertian surface, in the case of the reflection from the 
nonorthotropic surface the irradiance of the atmospheric 
layer due to reflections from the underlying surface depends 
on the azimuth, and if one uses the expansion of the 
solution over azimuthal harmonics, a large number of 
equations for different harmonics have to be solved. The 
boundary problems, like those presented by Eqs. (23), are 
the ordinary one–dimensional problems, and their solution 
is not very difficult. The authors of other approaches7-9 
construct the solution of the same problem using integral 
equations for layer reflectivities and transmissivities, and 
propose to use the method of successive approximations. 
Iterations in the form of Eq. (22) are simpler and do not 
need for any additional restrictions on the parameters of the 
layer. In addition, this approach allows the spatial and 
angular distributions of intensity to be directly obtained, 
i.e., we obtain a complete solution of the problem. 
 
THE INFLUENCE AND TRANSMISSION FUNCTIONS 

OF A LAYER WITH A UNIFORMLY 

NONORTHOTROPIC BOUNDARY 
 

If the ocean surface could be considered as a uniform 

(q = q– = const) nonorthotropically reflecting boundary the 
field of radiation in the "atmosphere–ocean" (ANOSS) 
system is being sought–after as a solution of the problem 

 

⎩⎪
⎨
⎪⎧

K
∧

zΦ = 0 ,       

Φ
Γ
0
 = πS

λ
δ(s – s

0
) ,

Φ
ΓH

 = qR
∧

HΦ     

 (25) 

 

in the form of a superposition Φ = Φ0 + Φa + Φq, where 

Φq = ΦaR and Φ(0) = Φ0 + Φa. The components Φ0 and Φa 

are solutions of problems (3) and (4), respectively. 
The boundary problem for the irradiance due to 

reflections in a horizontally homogeneous system of a layer 
and underlying surface with nonorthotropic reflection, 

described by the operator R
∧

H, 
 

⎩⎪
⎨
⎪⎧

K
∧

zΦq = 0 ,       

Φq Γ
0
 = 0 ,       

Φq ΓH
 = qR

∧
HΦq + qE

 (26) 

 

involves the radiation source described by the irradiance 

E(s) = R
∧

HΦ
(0), which is produced by an isolated layer that, 

in turn, is a function of the direction s∈ Ω 
–1. 

Representing the illumination in terms of the integral 
with a δ–function as 

 

E(s) = 
1
2π ⌡

⌠

Ω
–

 
E(s

0
)
 
δ(s – s

0
)ds

0

 

, (27) 

 

one can seek after the irradiance due to the reflections from 
the underlying surface in the form of the functional 
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Φq(z, s) = 
1
2π ⌡

⌠

Ω
–

 
E(s

0
)
 
θq
0(z, s, s

0
)ds

0
 , (28) 

 

its kernel being the IF θq
0(z, s, s

0
), which is the solution of 

the boundary problem with its parameter s
0
∈ Ω 

-1 
 

⎩⎪
⎨
⎪⎧

K
∧

zθq
0 = 0 ,            

θq
0

Γ
0
 = 0 ,           

θq
0

ΓH
 = qR

∧
Hθq

0 + qδ(s – s
0
).

 (29) 

 

Let us introduce a parametric series 
 

θq
0(z, s, s

0
) = ∑

k=1

∞

 
q k 

θk
0(z, s, s

0
) (30) 

 

and proceed to the system of recurrent problems 
 

k = 1: 

⎩⎪
⎨
⎪⎧

K
∧

zθ1
0 = 0 ,     

θ
1
0

Γ
0
 = 0 ,     

θ
1
0

ΓH
 = δ(s – s

0
),

 

 

k ≥ 2: 

⎩⎪
⎨
⎪⎧

K
∧

zθk
0 = 0 ,     

θk
0

Γ
0
 = 0 ,     

θk
0

ΓH
 = R

∧
Hθk–1

0  .

 

 

It can be shown by the method of induction that the 
kth approximation can be presented by the operator, whose 
kernel is the linear IF θ

1
0(z, s, s

0
) (k ≥ 2). 

As a result2 the IF θq
0(z, s, s

0
) can be expressed in 

terms of the linear parametric IF θ
1
0(z, s, s

0
) for any law of 

reflection 
 

θq
0(z, s, s

0
) = qθ

1
0(z, s, s

0
) + 

q2

2π 
⌡
⌠

Ω
–

 
θ
1
0(z, s, s

1
)
 
[R
∧

H 
θ
1
0](s

1
, s

0
)ds

1
 + 

 

+ ∑
k=3

∞

 

 qk

(2π)k–1 ⌡
⌠

Ω
–

 
θ
1
0(z,

 
s, sk-1

)dsk–1
 × 

 

× 

⌡
⌠

Ω
–

 
[R
∧

H θ1
0](sk–1

,
 
sk–2

)dsk-2
...
⌡
⌠

Ω
–

 
[R
∧

H 
θ
1
0](s

3
,
 
s
2
)ds

2
 × 

 

× 

⌡
⌠

Ω
–

 
[R
∧

H θ1
0](s

2
, s

1
)
 
[R
∧

H θ1
0](s

1
, s

0
)ds

1
 . (31) 

 

Using presentation (31) for qq
0 we obtain an explicit 

expression for the irradiance Φq due to reflections from the 

underlying surface in terms of the surface illumination, the 
operator of reflection, and the linear q

1
0 of an isolated layer 

 

Φq(z, s) = 
q
2π ⌡

⌠

Ω
–

 
E(s

0
)
 
θ
1
0(z, s, s

0
)ds

0
 + 

 

+ 
q2

(2π)2 ⌡
⌠

Ω
–

 
E(s

0
)ds

0 ⌡
⌠

Ω
–

 
θ
1
0(z, s, s

1
)
 
[R
∧

H 
θ
1
0](s

1
, s

0
)ds

1
 + 

 

+ ∑
k=3

∞

 

 

qk

(2π)k)⌡
⌠

Ω
–

 
E(s

0
)ds

0
 ⌡
⌠

Ω
–

 
θ
1
0(z, s, sk–1

)dsk–1 
×  

 

× 

⌡
⌠

Ω
–

 
[R
∧

H 
θ
1
0](sk–1

, sk–2
)dsk–2

...⌡⌠

Ω
–

 
[R
∧

H 
θ

1
0](s

3
, s

2
)ds

2
 × 

 

× 

⌡
⌠

Ω
–

 
[R
∧

H 
θ
1
0](s

2
, s

1
)[R

∧
H 
θ
1
0](s

1
, s

0
)ds

1
 . (32) 

 

Introducing new notation for the variables: sk–1
 = s

0
*, 

sk–2
 = s

1
*,..., s

1
 = sk–2

* , s
0
 = sk–1

*  we obtain an operator 

expression in which the kernel (i.e., the linear IF θ
1
0) as 

well as the linear and nonlinear corrections of the 
illumination E(s

0
) for the re–reflections of photons from 

the surface and for their multiple scatterings in the 
atmosphere are separated out 

 

Φq(z, s) = 
q
2π ⌡

⌠

Ω
–

 
θ
1
0(z, s, s

0
*)

 
ds

0
* 
⎩
⎨
⎧
E(s

0
*)

 
+
 
 

 

+ 
q
2π ⌡

⌠

Ω
–

 
[R
∧

H 
θ
1
0](s

0
*, s

1
*)

 
E(s

1
*) ds

1
* + 

 

+ 
∑

k=3

∞

 

qk–1

(2π)k–1 ⌡
⌠

Ω
–

 
[R
∧

H 
θ
1
0](s

0
*, s

1
*)

 
ds

1
*... 

 

...
⌡
⌠

Ω
–

[R
∧

H 

θ
1
0](sk–3

* , sk–2
* )

 
dsk–2

* ⌡
⌠

Ω
–

[R
∧

H 
θ
1
0](sk–2

* , sk–1
* )

 

dsk–1
* 

⎭
⎬
⎫ 

 
.  

 (33) 
 

This expression we call the optical transfer operator 
(OTO). 

Let us now consider problem (12) reduced to the 
system of recurrent problems (23). Using the IF θ

1
0(z, s, s′) 

the linear approximation may be defined as 
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Φ
1
(z, s) = 

q
2π ⌡

⌠

Ω
–

 
θ
1
0(z, s, s

0
)
 
E(s

0
)ds

0
 

 

and a recurrent relation between two successive 
approximations is then as follows: 
 

Φk(z, s) = 
q
2π ⌡

⌠

Ω
–

 
θ
1
0(z, s, s

0
)
 
[R
∧

H 
Φk–1

] (s
0
) ds

0
 . 

 

Let us now introduce the operator  
 

[R
∧

0 
f](s) = 

q
2π ⌡⌠

Ω
–

 
[R
∧

H 
θ
1
0] (s, s′)

 
f(s′)ds′ (34) 

 

which acts at the boundary z = H . 
For k ≥ 1 the representation 

 

Φk(z, s) = 
q
2π ⌡

⌠

Ω
–

 
θ
1
0(z, s, s

0
)
 
[R
∧

0 
k–1

 E](s
0
)ds

0
  

 

is valid. 
As a consequence the additional irradiance due to the re–
reflections from the surface can be written in terms of the 
functional with the kernel being the linear IF θ

1
0(z, s, s′): 

 

Φq = ∑
k=1

∞

 
Φk 

= 

q
2π ⌡⌠

Ω
–

 
θ
1
0

 (z, s, s
0
)  [ ∑

k=1

∞

 
R
∧

0 
k–1

 
E ](s

0
) ds

0
= 

 

= 
q
2π ⌡

⌠

Ω
–

 
θ
1
0(z, s, s

0
)
 
Eq(s0) ds

0
 , (35) 

 

where  
 

Eq(s0) ≡ [V
∧

0 
E](s

0
) ≡ ∑

k=0

∞

 [R
∧

0
k

 
E] (s

0
) = [(E

∧
 – R

∧
0
)–1

E](s
0
). 

 

Expression (35) is an optical transfer operator of a plane layer 
with a uniformly nonorthotropic boundary. The terms 

constituting the operator V
∧

0
 are related to the corresponding 

terms of the Neumann series over the orders of the reflection 
from the boundary with the full account for multiple 
scattering in the layer. Representations (33) and (35) of the 
OTO are completely equivalent to each other. Thus, in 
particular case of the Lambertian reflection (E = const) we 
have 
 

[R
∧

Hθ1
0] (s, s

0
) = [R

∧
θ
1
0] (s

0
) , (36) 

 

the transmission function is 
 

W
0
(z, s) = 

1
2π ⌡

⌠

Ω–

 
θ
1
0(z, s, s

0
)
 
ds

0
 , (37) 

 

and the spherical albedo is   
 

c
0
 ≡ R

∧
W

0
 = 

1
2π ⌡

⌠

Ω
–

 
[R
∧

 
θ
1
0](s

0
) ds

0
 . (38) 

 

The equation for the transmission function W
0
(z, s) is 

obtained by integration of the equation for θ
1
0(z, s, s

0
) over 

the parameter s
0
∈ Ω– under the boundary conditions 

 

{K
∧

zW0
 = 0, W

0 Γ0
 = 0, W

0 ΓH
 = 1 . (39) 

 

Uing the expression for the IF: 
 

θq
0(z, s, s

0
) = qθ

1
0(z, s, s

0
) + q2[R

∧
 θ

1
0](s

0
) W

0
(z, s) + 

 

+ ∑
k=3

∞

 
qk[R

∧
H 
θ
1
0](s

0
) W

0
(z, s) c

0
 k–2 (40) 

 

one can calculate the additional irradiance due to the 
reflections from the surface as follows: 
 

Φq(z, s) = 
1
2π ⌡

⌠

Ω
–

 
E

 
θq
0(z, s, s

0
)ds

0
 = 

 

= Eq

⎩
⎨
⎧ 

1
2π

 
⌡
⌠

Ω
–

 
θ
1
0(z,

 
s, s

0
)ds

0
 + qW

0
(z, s) 

1
2π ⌡

⌠

Ω
–

 
[R
∧

 
θ
1
0](s

0
)ds

0
 + 

 

+ ∑
k=3

∞

 
qk–1

 
c

0
 k–2 W

0
(z,

 

s)

 
1
2π 
⌡
⌠

Ω
–

 
[R
∧

 
θ
1
0](s

0
)ds

0

⎭⎪
⎬
⎪⎫
 

 

 = 

 

= EqW
0
(z, s) 

⎩⎪
⎨
⎪⎧
1

 

+ qc
0

 

+ ∑
k=2

∞

 

 
⎭⎪
⎬
⎪⎫

qk

 

c
0
k

 

   =  

 

= EqW
0
(z, s)/(1 – qc

0
) . (41) 

 

As a result we arrive at a generalization of the Sobolev 
formula7 allowing for the additional irradiance of the layer 
due to the reflections from the uniformly Lambertian 
surface provided that its illumination is homogeneous: 
 

Φq(z, s) = EqW
0
(z, s)/(1 – qc

0
) . (42) 

 
THE FUNCTION OF INFLUENCE AND THE SFC OF A 

LAYER WITH NONUNIFORMLY NONORTHOTROPIC 

BOUNDARY 
 

Let us construct a functional expression to describe the 
contribution of the additional irradiance Φq(z, r⊥, s) due to 

reflections from the nonuniform nonorthotropic boundary of 
the layer into its total irradiance. The function Φq(z, r⊥, s) 

is, in this case, a solution of the boundary problem with 
inhomogeneous albedo and nonorthotropic law of reflection: 
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⎩⎪
⎨
⎪⎧ K

∧
Φq = 0 , Φq Γ

0
= 0 ,         

Φq ΓH
= q(r

⊥
) R
∧

HΦq + q(r
⊥
)(s) E(s) ,

 (43) 

 

where E(s) = [R
∧

HΦ
(0)](s) and q(r

⊥
) = εq~(r

⊥
). Using the 

parametric series we can proceed to the system of recurrent 
problems 

 

k = 1: {K
∧
Φ

1
 = 0, Φ

1 Γ
0
= 0, Φ

1 ΓH
= q~(r

⊥
) E(s) , 

k ≥ 2: {K
∧
Φk = 0, Φk Γ

0
= 0, Φk ΓH

= q~(r
⊥
) R
∧

HΦk–1
 . 

 

Solutions of these problems are expressed in terms of the 
SFS's ψk(z, pk, ..., p1

, s) 
 

Φ
∨

1
(z, p

1
, s) = q∼

∨

 Ψ
1
(z, p

1
, s) , 

 

Φ
∨

k(z, p1
, s) =

1

(2π)2(k–1)
 

⌡
⌠

 

 

...

∞

-∞

⌡
⌠

 

 

 q∼
∨

(p
1
)q∼
∨

(p
2
 – p

1
)...q∼

∨

(pk – pk–1
) × 

 

× Ψk(z, pk, ..., p1
, s) dpk–1

...dp
1
 , (44) 

 

which satisfy the complex equations of radiation transfer 
 

{L
∧
(p

1
) Ψ

1
(z, p

1
, s) = 0 , Ψ

1 Γ
0
 = 0 , Ψ

1 ΓH
 = E(s) , (45) 

 

⎩⎪
⎨
⎪⎧

L
∧
(pk)Ψk = 0 ,            

Ψk Γ
0
 = 0 ,               

Ψk ΓH
 = R

∧
H Ψk–1

(H, pk–1
,..., p

1
, s) .

 (46) 

 

Let now the source function be introduced as 
 

E(s) = 
1
2π ⌡

⌠

Ω–

 
E(s

0
)
 
δ(s – s

0
)ds

0
 . (47) 

 

If the linear SFC is sought–after as a functional 
 

Ψ
1
(z, p

1
, s) = 

1
2π ⌡

⌠

Ω
–

 
E(s

0
)
 
θ
1
(z, p

1
, s, s

0
)ds

0
 , (48) 

 

its kernel will satisfy the complex equation of radiation 
transfer with the parameters p

1
 and s

0
 

 

{L
∧
(p

1
) θ

1
 = 0 , θ

1 Γ
0
 = 0 , θ

1 ΓH
 = δ(s – s

0
) . (49) 

 

It can be shown by the induction method that an arbitrary 
approximation of the SFC of the order k ≥ 2 is expressed in 
terms of the linear IF θ

1 
 

Ψk(z, pk,..., p1
, s) = 

1
2π ⌡

⌠

Ω–

 
θ
1
(z, pk, s, sk–1

)dsk–1 
 × 

×
1
2π⌡⌠

Ω
–

[R
∧

Hθ1
](pk–1

,sk–1
,sk–2

)dsk–2
...

1
2π⌡
⌠

Ω
–

[R
∧

H
 

θ
1
](p

2
,s

2
,s

1
)ds

1
 × 

× 
1
2π ⌡

⌠

Ω
–

 
E(s

0
)[R

∧
H 

θ
1
](p

1
, s

1
, s

0
)ds

0
 . (50) 

 

As a result one obtains a functional expression for the 
additional irradiance of the layer due to the reflections from 
the underlying surface 
 

Φq(z, r⊥, s) = 
1
2π ⌡⌠

Ω
–

 

 
E(s

0
)ds

0
 = 

 

= 
1

(2π)2 ⌡⌠

–∞

∞

 

 
q∼
∨

(p
1
)θ

1
(z, p

1
, s, s

0
) exp[–i(p

1
, r

⊥
)]dp

1
 + 

 

+∑
k=2

∞

 

 

1
2π⌡⌠

Ω
–

 

 
dsk–1

 
1

(2π)2⌡⌠

–∞

∞

 

 
θ
1
(z, pk, s, sk-1

) exp[–i(pk, r⊥)]dpk × 

 

×
1
2π⌡⌠

Ω
–

 

 
dsk–2

1

(2π)2 ⌡⌠

–∞

∞

 

 
q∼
∨

(pk – pk-1)[R
∧

H 
θ
1
] (pk–1

,sk–1
,sk–2

)dpk–1
× 

 

× 
1
2π⌡⌠

Ω
–

 

 
E(s

0
)ds

0
 

1

(2π)2 ⌡⌠

-∞

∞

 

 
 q∼
∨

(p
1
) q∼

∨

(p
2
 – p

1
)[R

∧
H 
θ
1
](p

1
,s

1
,s

0
)dp

1
  

 (51) 
 

 

that is the optical transfer operator. 
Let us construct the optical transfer operator by 

making use of the operation at the boundary z = H 
 

[R
∧
f
∨

] ≡ 
1

(2π)2 ⌡⌠
–∞

∞

 
q∼
∨

(p – p′)dp′ × 

 

× 
1
2π ⌡

⌠

Ω–

 
[R
∧

H
 
θ
1
](p′, s, s′) f

∨

 (p′, s′)ds′ . (52) 

 

Within the linear approximation we have 

Φ
∨

1
((z, p, s) = 

q∼
∨

(p)
2π  ⌡⌠

Ω–

 
θ
1
(z, p, s, s

0
)
 
E(s

0
)ds

0
 .  

 

It can be shown2 that for k ≥ 1 the representation 

Φ
∨

k(z, p, s) = 
1
2π ⌡⌠

Ω–

 
θ
1
(z, p, s, s

0
)
 
[R
∧

k–1 q∼
∨

 E](p, s
0
) ds

0
 (53) 

 

is valid and, as a consequence, the additional irradiance is 
determined by the functional 
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Φq(z, r⊥, s) = 
1

(2π)2 ⌡
⌠
–∞

∞

 
exp[–i(p,

 
r
⊥
)]dp × 

 

× 
1
2π ⌡⌠

Ω–

 
θ
1
(z, p, s, s

0
)
 
[V
∧

 q∼
∨

E](p, s
0
)ds

0
 . (54) 

 

The sum of the Neumann series is denoted here as: 
 

[V
∧

q∼
∨

E](p, s
0
) = ∑

k=0

∞

 [R
∧

kq∼
∨

 
E](p, s

0
) =  

 

= [(E
∧
 – R

∧
)-1q∼

∨

E](p, s
0
) . (55) 

 

Expression (54) is the optical transfer operator of a plane 
layer with nonuniformly, nonorthotropic boundary. 

Thus the solution of the problem on additional 
irradiance of the layer due to the reflections from its 
boundary Φq is reduced to the solution of the one–

dimensional complex problem with the parameters p and s
0
 

for the linear IF θ
1
(z, p, s, s

0
) and to calculation of the 

OTO (51). In the case of a uniformly underlying surface, 
i.e., at q = const, we have 

 

Φq(z, s) = ∑
k=1

∞

 
qk

 
Ψk

0(z, s) , θ
1
0(z, s, s

0
) = θ

1
(z, p = 0, s, s

0
) , (56) 

 

k = 1: Ψ
1
0(z, s) = Ψ

1
(z, p

1
 = 0, s) = 

1
2π ⌡⌠

Ω
–

 
E(s

0
)
 
 θ

1
0(z, s, s

0
)ds

0
, 

 

k ≥ 2: Ψk
0(z, s) = Ψk(z, pk = 0, ..., p

1
 = 0, s) = 

 

= 
1
2π⌡⌠

Ω
–

 
θ
1
0(z,

 
s, sk–1

)dsk-1
 
1
2π 
⌡
⌠

Ω
–

 
[R
∧

H
 
θ
1
0](sk–1

, sk–2
)dsk–2

 ... 

 

... 
1
2π ⌡⌠

Ω
–

 
E(s

0
)
 
[R
∧

H 
θ
1
0](s

1
, s

0
)ds

0 
. 

 

If the underlying surface is uniform and orthotropic, 
and E = E(s) expression (51) is transformed into the 
generalized Sobolev formula (42). When the albedo has a 
constant component, the problem on the additional 
irradiance of the layer due to the reflections from its 
boundary 

 

⎩⎪
⎨
⎪⎧ K

∧
Φq = 0 ,                      

Φq⏐Γ
0
 = 0 ,                     

Φq⏐ΓH
 = (q– + εq~) R

∧
HΦq + (q– + εq~) E

0
(s)

 (57) 

 

can be reduced to the system of recurrent problems 
 

k = 0: {K
∧

zΦ0
 = 0 , Φ

0 Γ
0
 = 0 , Φ

0 ΓH
 = q–R

∧
HΦ0

 + q–E
0
(s)} , 

k = 1: {K
∧
Φ

1
 = 0 , Φ

1 Γ
0
 = 0 , Φ

1 ΓH
 = q–R

∧
HΦ1

 + q~E(s)} , 

 

k ≥ 2: {K
∧
Φk = 0 , Φk Γ

0
 = 0 , Φk ΓH

 = q–R
∧

HΦk + q~R
∧

HΦk–1
}  

 

using the parametric series, and assuming that 

E(s) = E
0
(s) + R

∧
HΦ0

. 

Using the IF θq
0(z, s, s

0
) ≡ θq(z, p = 0, s, s

0
) we obtain 

 

Φ
0
(z, s) = 

1
2π ⌡⌠

Ω
–

 
E

0
(s

0
)
 
θq
0(z, s, s

0
)ds

0
 (58) 

 

or 

Φ
0
(z, s) = 

q–

2π ⌡
⌠

Ω
–

 
θ
1
0(z, s, s

0
)
 
[V
∧

0 
E

0
](s

0
)ds

0
 . (59) 

 

In the linear approximation we have 
 

Φ
∨

1
(z, p

1
, s) = q∼

∨

(p
1
) Ψ

1q(z, p1
, s) ,  

 

where the SFC Ψ
1q is found from the problem 

 

{L
∧
(p

1
) Ψ

1q = 0 , Ψ
1q Γ

0
 = 0 , Ψ

1q ΓH
 = q–R

∧
HΨ1q + E(s) 

 

in terms of the IF θq(z, p, s, s
0
) as 

 

Ψ
1q(z, p1

, s) = 
1
2π ⌡⌠

Ω
–

 
E(s

1
)
 
θq(z, p1

, s, s
1
)ds

1
 ,  

 

which satisfies the complex equation 
 

⎩⎪
⎨
⎪⎧

L
∧
(p) θq(z, p, s, s

0
) = 0 ,  

θq Γ
0
 = 0 ,           

θq ΓH
 = q–R

∧
Hθq + δ(s – s

0
)

 (60) 

 

with the parameters p and s
0
. 

Introducing the parametric series 
 

θq(z, p, s, s
0
) = ∑

k=1

∞

 
q–k

 θqk(z, p, s, s
0
) , (61) 

 

we arrive at the recurrent system of equations 
 

k = 0: {L
∧
(p) θq0

 = 0 , θq0 Γ
0
 = 0 , θq0 ΓH

 = δ(s – s
0
) , 

k ≥ 1: {L
∧
(p) θqk = 0 , θqk Γ

0
 = 0 , θqk ΓH

 = R
∧

Hθq, k–1
 . 

 

It is obvious that θq0
(z, p, s, s

0
) = θ

1
(z, p, s, s

0
). All other 

approaches are expressed by means of the operators, their 
kernels being the influence function θ

1
(z, p, s, s

0
). 

The nonlinear approaches of the additional irradiance 
Φk of the layer are written, similarly to expression (44),  
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using the nonlinear SFC's Ψkq(z, pk, ..., p1
, s) which bring 

the solution to the recurrent system of complex equations 
 

⎩⎪
⎨
⎪⎧

L
∧
(pk)Ψkq = 0 ,                     

Ψkq Χ
0
 = 0 ,                       

Ψkq ΧH
 = q–R

∧

H
Ψkq + [R

∧

H
Ψk-1, q] (pk–1

, ... , p
1
, s) .

 

 

Two successive approaches of the SFC are related by 
the recurrent expression 

 

Ψkq(z, pk, ..., p1
, s) = 

1
2π ⌡⌠

Ω
-

 
θq(z, pk, s, s0)

 
× 

 

× [R
∧

H
Ψk–1, q](pk–1

, ... , p
1
, s

0
)ds

0
 .  

 

And for k = 2 we have 
 

Ψ
2q(z, p2

, p
1
, s) = 

1
2π ⌡⌠

Ω
-

 
θq(z, p2

, s, s
1
)ds

1
 
× 

 

× 
1
2π ⌡
⌠

Ω
-

 
[R
∧

H 
θq](p1

, s
1
, s

0
) E(s

0
)ds

0
 . 

 

It can also be shown by the induction method that the 
operator expression (50) is valid for the SFC Ψkq if the IF 

θ
1
 is substituted in it for the IF θq. The parameters 

pk, ..., p1
 are split in this case, but it is then impossible to 

sum the Neumann series. In this case the representation of 
Φq by expression (51) is valid olny if the IF θ

1
 is replaced 

for the IF θq, which, in its turn, is completely defined in 

terms of the IF θ
1
(z, p, s, s

0
) 

 

θq(z, p, s, s
0
) = θ

1
(z, p, s, s

0
) + 

 

+ 
q–

2π 
⌡
⌠

Ω
-

 
θ
1
(z, p, s, s

1
)
 
[R
∧

H 
θ
1
](p, s

1
, s

0
)ds

1
 + 

 

+ ∑
k=2

∞

 

 

q–k

2π  
⌡⌠

Ω
-

 
θ
1
(z, p, s, sk)dsk

 

1
2π ⌡
⌠

Ω
-

 
[R
∧

H
 
θ
1
](p, sk, sk-1

)dsk-1
... 

 

... 
1
2π ⌡⌠

Ω
-

 
[R
∧

H 
θ
1
](p, s

2
, s

1
)[R

∧
H 
θ
1
](p, s

1
, s

0
)ds

1
 . (62) 

 

By making use of the recurrent relation 
 

θqk(z, p, s, s
0
)=

1
2π 
⌡
⌠

Ω
-

 
θ
1
(z, p, s, s

1
)
 
[R
∧

H 
θq, k–1

](p, s
1
, s

0
)ds

1
 (63) 

 

and of the operation at the boundary z = H 
 

[R
∧

c f
∨

](p, s, s
0
) ≡ 

1
2π ⌡
⌠

Ω
-

 
[R
∧

H
 
θ
1
](p, s, s

1
) f

∨

(p, s
1
, s

0
)ds

1
 (64) 

 

it is quite easy to find the functionals for the approaches at 
k ≥ 1 
 

θqk(z, p, s, s0) = 
1
2π 
⌡
⌠

Ω
-

 
θ
1
(z, p, s, s

1
)[R

∧
c 

k–1

 
R
∧

H 
θ
1
](p, s

1
, s

0
)ds

1
 . 

 

Therefore, the IF θq can be represented as a sum of the 

Neumann series 
 

θq(z, p, s, s
0
) = θ

1
(z, p, s, s

0
) + 

 

+ 
q–

2π ⌡⌠

Ω
-

 
θ
1
(z, p, s, s

1
)
 
E

0
(p, s

1
, s

0
)ds

1
 , (65) 

 

where 
 

E
0
(p, s

1
, s

0
) ≡ ∑

k=0

∞

 

 
q–k [R

∧
c
k
 R
∧

H 
θ
1
](p, s

1
, s

0
) = 

 

= [V
∧

c R
∧

H 
θ
1
](p, s

1
, s

0
) , (66) 

 

Vcf
∨

 ≡ ∑
k=0

∞

 

 
q–k R

∧
c
k f

∨

 = [E
∧
 – q– R

∧
c]

–1
f
∨

 . (67) 

 

It is obvious that q– R
∧

c coincides with R
∧
 at  

q~ = q– = const. The successive approaches are related to each 
other by the reccurrent relation 
 

Φ
∨

k(z, p, s) = 
1
2π ⌡⌠

Ω
-

 
θq(z, p, s, s

0
)ds

0
 
× 

 

× 
1

(2π)2 ⌡⌠
–∞

∞

 

 
q~
∨

(p – p′)[R
∧

HΦ
∨

k–1
](p′, s

0
)dp′ . 

 

Let us introduce the operation 
 

[R
∧

qf
∨

](p, s) ≡ 
1

(2π)2 ⌡⌠
–∞

∞

 

 
q~
∨

(p – p′)dp′ × 

 

× 
1
2π ⌡
⌠

Ω
-

 
[R
∧

H
 
θq](p′, s1, s′)f

∨

(p′, s′)ds′ (68) 

 

at the boundary z = H. 
It can be shown by the induction method that for k ≥ 1 
 

Φ
∨

k(z, p, s) = 
1
2π ⌡⌠

Ω
-

 
θq(z, p, s, s

0
)
 
[R
∧

q 
k–1q~

∨

E](p, s
0
)ds

0
 . 

 

The additional irradiance of the layer due to the 
reflections from its boundary is calculated using the optical 
transfer operator, its kernel being the IF θq 

 

Φq(z, r⊥, s) = 
1
2π ⌡⌠

Ω
-

 
θq

0(z, s, s
0
)
 
E

0
(s

0
)ds

0
 + 
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+ 
1

(2π)2 
⌡⌠
–∞

∞

 

 
exp[–i(p, r

⊥
)]dp × 

 

× 
1
2π ⌡⌠

Ω
-

 

 
θq(z, p, s, s

0
) [V

∧
q 
q~
∨

E](p, s
0
)ds

0
 , (69) 

 

and then the sum of the Neumann series is 
 

V
∧

qf
∨

 ≡ ∑
k=0

∞

 

 
R
∧

q
kf
∨

 = [E
∧
 – R

∧
q]

–1
f
∨

 . (70) 

 
FUNDAMENTAL SOLUTION OF THE BOUNDARY 

PROBLEM FOR THE ADDITIONAL IRRADIANCE AT 

AN ARBITRARY LAW OF REFLECTION 
 

When the albedo is perturbed at a point (q(r
⊥
) = q~δ(r

⊥
)) 

the fundamental solution of the boundary problem for 
additional irradiance of the layer can be found using 
expression (44) and the definition of the IF as 
θk(z, r⊥k,..., r⊥1

,s) = F–1[Ψk] as follows: 
 

Φ
δ
(z, r

⊥
, s) = ∑

k=1

∞
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(2π)k 

⌡
⌠

 

 

...

∞

-∞

⌡
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,s) × 

 

× exp[–i(pk, r⊥)]dpk...dp
1
 = ∑

k=1

∞
 

 

q~kθk(z,
 r

⊥k, 0,..., 0, s) . (71) 

 

Using expression (50) for the SFC Ψk we can find its more 

detailed representation based on the use of the linear IF 
θ
1
(z, p, s, s′), i.e., 

 

Φ
δ
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⊥
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(sk–1
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... 

 

... 
1
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1
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0
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1
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0
)ds

0
 , (72) 

 

where 
 

θ(z, r
⊥
, s, s′) ≡ 

1

(2π)2 

⌡
⌠

-∞

∞

 

 

θ
1
(z, p, s, s′) exp[(–i(p, r

⊥
)]dp , (73) 

 

and 
 

c
1
(s, s′) ≡ 

1

(2π)2 

⌡⎮
⌠

–∞

∞

 

 
[R
∧

H 
θ
1
](p, s, s′)dp . (74) 

 

The formulated mathematical models of the OTO, SFC, and 
IF make it possible to construct new techniques of remote 
sensing of nonorthotropic surfaces (such as land and ocean), 
based on the fundamental solutions of the boundary problems 
of the theory of radiation transfer. As was shown above, in the 
case of uniform nonorthotropic surfaces the IF of the 
atmosphere is a response of the medium on the propagation of 
a wide monodirected beam, and in the case of nonuniform 
surface it corresponds to the response on the propagation of a 
laser beam. In the case of the Lambertian surface the IF is 
determined by isotropic sources. 
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