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A dispersion technique for estimating the zenith angle of a target moving in the 
atmosphere is analyzed. It is based on measurements of two apparent zenith angles at 
two optical wavelengths and meteorological parameters at the observation point. 
Recommendations on how to choose proper pairs of wavelengths are given and the 
accuracy of this technique is estimated. 

 
Optical refraction in the atmosphere bends the 

trajectories of light propagation thus hindering the 
determination of a true position of a moving target. To 
account for the effect of refraction one has to know the 
vertical profile of the refractive index of air along the beam 
propagation path, what could be possible either from 
operative measurements or from some model of the 
atmosphere. 

Operative measurements of vertical profiles of the 
refractive index of the atmosphere are too problematic 
because of considerable technical difficulties, especially for 
objects moving along slant paths and unknown trajectories. 
An alternative approach could be based on the account for 
refraction using some statistical models of the atmosphere. 

The techniques based on the use of statistical models 
of the atmosphere are used quite rarely, because of 
inherently large errors and the need for a computer with 
large operative memory. 
There exist methods using analytical models of the profiles 
of the refractive index of the atmosphere that do not require 
big computers but their accuracy is very poor, especially at 
large zenith angles (z > 750°) of a target, because of 
deviations of the actual profiles of the refractive index from 
the model ones. 
 

 
 

FIG. 1.  
 

The accuracy of determining the zenith angle of a 
target can be improved by using a dispersion technique that 
is based on the use of the dependence of the angle at which 
the beam arrives at the receiver on wavelength. Let us 
consider the diagram presented in Fig. 1, where ξ

1
 and ξ

2
  

denote the apparent zenith angles of a target measured at 
the wavelengths λ

1
 and λ

2
, Δr is the angle of differential 

refraction; z is the true zenith angle of a target, R
0
 is the 

radius of the Earth; R
t
 = R

0
 + H, H is the height of a 

target above the sea level. 

It can be seen from Fig. 1, that the geocentric angle θ 
is independent of the wavelength, at which the target is 
observed. Therefore, one may write, according to the theory 
of refraction for a spherically stratified medium1 
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are the refractive indices of air at the observation point for 
radiation with the wavelengths λ

1
 and λ

2
, respectively; h

1
 

and h
2
 are the refractive index values at a point running 

along the light trajectory at corresponding wavelengths. 
Under condition that the refractive index varies 

continuously along the beam path it can be replaced by its 
integral average, and, according to Ref. 2, the solution of 
equation (1) is as follows: 
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Using standard transformations of the inverse 
trigonometric functions2 and denoting  

 

A = 
n

01
sinξ

1

<n
1
>

 ,  B = 
n

02
sinξ

2

<n
2
>

 ,  G = 
R

0

R
0
 + H ,   

 
after quite simple algebraic transformations of relation (2) 
we obtain  

 

(A2 – B2)2(1 – G2)2 = 0 . (3) 
 

It follows from relation (3) that only the first term of 
the product can become zero, since for slant beam paths 
G < 1 and, therefore, one obtains the equality  
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By substituting the Gladstone–Dahl formula for the 

refractive index of air into Eq. (4), after simple 
transformations we obtain the relation for estimating 
integral average of the refractive index of air at the 
wavelength 
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where C
λ
1

 and C
λ
2

 are the coefficients dependent on the 

wavelength.  
Based on the theorem of sines we obtain an expression 

for geocentric angle from the triangle AOB in Fig. 1: 
 

θ = z – arcsin(Gsinz)  
 

By substituting this equation into the right side of Eq. (2) 
and solving it relative to sin z by its twice squaring and 
reducing identical terms, we obtain 
 

(sin2z – A2)2(1 – G2)2 = 0 . (6) 
 

The analysis of Eq. (6) shows that this equality holds 
only when the first term vanishes, thus resulting in the 
following equality: 
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or in 
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Thus, according to the theory of refraction in a 
spherically stratified atmosphere and assuming that the 
target is observed at two optical wavelengths, we obtain an 
expression which makes it possible to estimate the true 
value of the zenith angle of a target moving in the 
atmosphere. As can be seen from Eq. (7) to calculate the 
true value of the zenith angle one needs to measure the 
refractive index of air (or meteorological parameters) at the 
observation point together with the apparent zenith angle at 
corresponding wavelengths.  

It should be noted that the two apparent zenith angles 
may be measured by both an active or a passive technique, 
that provides for isolating spectral intervals at two 
wavelengths from the optical signal using some filters. 

It is obvious that the differential refraction will be the 
largest if one wavelength lies within the IR, and the other 
one within the UV range. However, strong extinction of the 
UV radiation prevents from using it at large zenith angle. 
At the same time, if two close wavelengths in the IR range 
are used, then the differential refractive angle cannot be 
measured at all. Thus, the problem on the proper choice of a 
pair of wavelengths for such measurements arises. 
 

 
 

FIG. 2. 
 

To demonstrate this we computed the angles of 
differential refraction for several pairs of wavelengths as a 
function of the height and the zenith angle of a target, 
using a model of a local atmosphere. Some results of such 
computations are presented in Figs. 2 – 5. It can be seen 
from this figures that within the whole range of heights and 
zenith angles the largest angles of differential refraction are 
obtained for the pair of wavelengths of λ

1 
= 0.6943 μm and 

λ
2 
= 0.3472 μm (Fig. 2). 

 

 
 

FIG. 3. 
 

However, the use of this pair of wavelengths is limited 
because of significant extinction of radiation at the second 
wavelength for z > 75°. 

Figures 3 and 4 show the dependences of the angles of 
differential refraction on the zenith angles and target heights 
for two pairs of wavelengths: λ

1 
= 0.4416 and λ

2 
= 0.3472 and 

λ
1 
= 1.06 and λ

2 
= 0.84 μm, respectively. It can be seen from 

these figures, that despite a significant steepness of the 
corresponding characteristic the first pair cannot be used, 
because of strong absorption of radiation by the atmosphere 
(see Fig. 6). The second pair of wavelengths lying in the 
near–IR suffers weaker atmospheric absorption. However, 
even at the zenith angles exceeding 75° its differential 
refraction remains within several seconds of arc, so that 
extremely strict restrictions would be imposed on the 
measurement system, that can hardly be attainable in practice. 
Therefore, the optimal pair of wavelengths could be 
λ
1 
= 0.6943 and λ

2 
= 0.4416 μm (Fig. 5), since the angle of 

differential refraction for it has quite a steep dependence on 
zenith angle, and the atmospheric extinction is not very strong 
at these wavelengths. 

 
 

FIG. 4. 
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FIG. 5. 
 

 
 

FIG. 6. 
 

It is evident from the figures that the pair of 
wavelengths λ

1 
= 0.6943 and λ

2 
= 0.3472 μm is the most 

suitable for observations of objects at the zenith angles 
z < 60° while the pair λ

1 
= 0.6943 and λ

2 
= 0.4416 μm better 

suites the observations at larger zenith angles. 
To estimate the accuracy of the technique we have 

specially derived expressions, which showed that the error 
of calculations is mainly due to the errors in measurements 
of the zenith angle and differential refraction. The potential  

accuracy of the technique was analyzed for the following 
initial data: apparent zenith angle varied from 20° to 89°, 
target height changed from 2 to 1000 km, pressure and 
temperature at the observation point were 976.24 mb and 
263.69 K, respectively, assuming the accuracy of their 
measurements to be 0.1 mb and 0.1 K. 

 

 
 

FIG. 7. 
 

The results of this analysis are presented in Fig. 7. 
One can see that the error of the true zenith angle estimate 
is comparable to the rms error of the refractive angle 
retrieved from the results of aerological sounding. Note also 
that the proposed technique significantly reduces the effect 
of atmospheric turbulence, since the apparent zenith angles 
are measured during the time interval when the atmosphere 
can be considered to be "frozen". 

The latter feature makes it possible to estimate the 
true direction to target on a real time scale, providing thus 
a possibility of accounting for inhomogeneities along the 
sensing path. 
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