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The depth behavior of light scattering in turbid media with slowly decreasing 
phase functions (i.e., when the scattering probability decreases with increasing 
scattering angle γ more slowly than γ–4) is studied. The Fokker–Planck approximation 
is not used. Postulating the angular spectrum shape in the depth regime we have 
proposed and realized a regular algorithm for determining the spectrum parameters. 
The depth variance and extinction coefficient are described analytically. The results of 
our study are in good agreement with numerical data and in limiting case they 
coincide with the results of the diffusion approach. 

 
INTRODUCTION 

 
The study of light propagation through absorbing media 

with a strongly pronounced anisotropic scattering on 
individual centres for 1 – < cosγ > n 1, where <cosγ> is the 
mean cosine of a single scattering angle, is of practical and 
theoretical importance for many problems in hydro–optics and 
atmospheric physics as well as for different artificial optical 
media with the size of scattering centres much larger than the 
light wavelength (a . λ) and with their relative index of 
refraction ∼ 1. Under these conditions, the effective angle of 
single scattering is small γeff ∼ λ/a n 1 (Refs. 1–4). A 

comprehensive information on the law of photon scattering on 
an isolated scattering centre is contained in the scattering 
phase function χ(γ) normalized according to the condition 

 

2π⌡⌠
0

π

sinγχ(γ) dγ = 1 , so that <cosγ> = π⌡⌠
0

π

sin2γχ(γ) dγ . (1) 

 

In strongly absorbing (turbid) media with large 
scattering centres the double inequalities 

 

σ . κ .D , i.e., l
–

 n la n ltr , (2) 
 

are fulfilled. Here σ is the scattering coefficient, κ is the 
coefficient of true absorption, D is the angular diffusion 

coefficient, l
–

 = σ–1 is the length of elastic scattering, la = κ
–1 

is the length of absorption, ltr = (2D)–1 is the transport 

length of scattering, i.e., the length of a propagation path 
after passing which in a substance the originally 
monodirectional flux of photons becomes almost completely 
isotropic due to a purely elastic scattering. 

In this case by the moment when absorption of light 
becomes essential in forming the light field, the photon 
have already undergone a large number of elastic 

collisions (n
col

 ∼ la/ l
–

 . 1). In the depth region of the 

greatest interest (z  la), the scattered light field is formed 

due to multiple scattering of photons. However, because 
of a strong absorption (la 

n
 
ltr ) the light beam does not 

become isotropic since the photons undergone a relatively 
stronger scattering propagate along a more bent 
trajectories and are absorbed before they reach the depth 
z ∼ ltr. 

 

Therefore, even at a comparatively large depth 

z >∼ laltr the light is scattered at small angles 
 

 

<θ2>z n 1 , (3) 
 

where <θ2>z is the mean square of a multiple scattering 

angle at the depth z. Therefore, to describe the photon 

propagation one can make use of a small–angle approach.3-7 
With a small–angle scattering, the mean path passed 

by photons in a layer of substance of the thickness z (at 
normal incidence of the beam on the medium surface) is 
determined from the relation 
 

<s>z = ⌡⌠
0

z

dz′ < 
1

cosθ >z′ ≈ z + 
1
2⌡
⌠
0

z

<θ2>z′ 

 
dz′ . (4) 

 

The absorption and scattering processes become competitive 
in the region of depths where (<s>z – z)  la. 

Although the radiation transfer equation in a small–
angle approximation (SA) is quite simple its analytical 
solution can hardly be obtained in the case of a medium 
with an abitrary sharply anisotropic scattering phase 
function. The principle problem is to correctly account for 
the mutual effect of strong absorption and multiple 
scattering which result in fluctuations of a photon free 
path. There are no serious problems but in the case of small 
depths (<s>z – z)  la, where the light absorption does not 

affect the formation of the radiation angular spectrum4,8,9 
(standard small–angle approach (SSA)). 

In recent years a large number of papers has been 
published3–7,10–15 which dealt with the analytical calculations 
of radiation intensity using SA for wide and narrow, 
stationary and nonstationary light beams incident both 
normally and obliquely on a medium. However, in all these 
works the Fokker–Planck approach (small–angle diffuse 
approach (SADA) is used, in which the integral of elastic 
collisions entering into the transfer equation is written in a 
differential form. The possibility of using the SADA are 
associated with rather rigourous restrictions imposed on the 
shape of the scattering phase function χ(γ): it must decrease 
with increasing γ quicker than γ–4, i.e., quicker than the 
Rutherford phase function.16,17 However, it is well known 
that just the opposite situation is observed in the majority of 
real turbid media1–3,17,18. Therefore, it becomes of vital  
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importance to develop a technique for calculating light fields 
just in such media. 

In the present paper we propose a method for studying 
light fluxes at large depths in media with the scattering 
phase functions relatively slowly decreasing with the γ 
increase, χ

ν
(γ . γeff) ∼ γ–2(1+ν), where ν < 1 taking into 

account the joint effect of the photon absorption and 
scattering in turbid media. 

 
FORMULATION OF THE PROBLEM 

 
Let a wide stationary light flux with the intensity I

0
 

be incident on a plane boundary of a turbid medium 
occupying the half–space z > 0 (the z axis is directed into a 
substance along the normal to its surface). Then the 
intensity of radiation I(z, μ) (μ = cosθ) propagating at an 
angle θ to the z axis will be described by the equation  

 

μ 
∂I
∂z + kI(z; μ) = B

∧
I , (5) 

 

where B
∧
I is the Boltzmann integral of elastic collisions.1–4 

The boundary condition for Eq. (5) is 
 

I(z = 0; μ > 0) = 
1
2π I

0 
δ(1 – μ) . (6) 

 
The small–angle approach allows an essential 

simplification of Eqs. (5) and (6) to be made. As is usual 
for the SA, all angular variables can be assumed to vary 
within the infinite limits. Moreover, the angle γ of a single 
scattering causing the transition from the state (θ′, ϕ′) to 
the state (θ, ϕ) is determined by the expression 

 
γ2 ≈ θ2 + θ′2 – 2θθ′ cos(ϕ – ϕ′) . (7) 
 
The total light flux at the depth z is 

 

E(z) = 2π⌡⌠
0

∞

θI(z; θ) dq (8) 

 

and, taking Eq. (4) into account, it is determined by the 
expression6 

 

E(z) = I
0
exp { –k<s>z} = 

 

= I
0 
exp

⎩
⎨
⎧

⎭
⎬
⎫

 –k 

⎣
⎢
⎡

⎦
⎥
⎤

z + 
1
2 ⌡⌠

0

z

<θ2>z' dz′  . (9) 

 

Since the photons propagate along "bent" trajectories 
it seems to be logical to separate out the Bouguer exponent 
in the intensity not as a function of the depth z, but of the 
mean path <s>z by representing I(z, θ) in the form 

 

I(z, θ) = E(z) Φ(z, θ) , (10) 
 

where E(z) is the unknown value of the radiation flux 
(Eqs. (8) and (9)). The angular function Φ(z, θ) is 
normalized on the interval (0 ≤ z < ∞) according to the 
condition 
 

2π ⌡⌠
0

∞

Φ(z, θ) θ dθ = 1 . (11) 

 

Thus, the value 2πΦ(z, θ) θ dθ implies that at the 
depth z a photon propagates within the angular interval 
from θ to θ + dθ. The value <θ2>z is related to Φ(z, θ) as 
follows: 

 

<θ2>z = 
2π

E(z) ⌡⌠
0

∞

θ3I(z, θ) dθ = 2π ⌡⌠
0

∞

θ3Φ(z, θ) dθ . (12) 

 

By substituting Eq. (10), on account of Eq. (9), into 

Eq. (5), and assuming that μ ≈ 1 – 
1
2 θ

2, and holding only 

the first nonvanishing terms, one obtains the equation for 
the angular function Φ(z, θ) in the SA 

 

∂Φ
∂z  + 

k
2 [θ2 – <θ2>z] Φ(z, θ) = B

∧
Φ , (13) 

 

where, according to the small–angle approach 
 

B
∧

Φ = –σ ⌡⌠
0

2π

dϕ′ ⌡⌠
0

∞

θ′ dθ′ χ(γ) [Φ(z, θ) – Φ(z, θ′)] , (14) 

 

and γ2 is determined from Eq. (7). Corresponding boundary 
condition has the form 
 

Φ(z = 0; θ) = 
1
2π 

δ(θ)
θ  . (15) 

 

The value <θ2>z is unknown and should sought be after in 

the process of solving the problem. 
If the system of equations (13)–(15) is solved and 

<θ2>z is determined, it is possible to determine the light flux 

E(z) and, hence, the intensity I(z, θ) using Eq. (9). 
Using the summation theorem for the Bessel 

functions19 it is possible to represent collisional integral 
(14) in the form 

 

B
∧

Φ = – 
σ
2π ⌡⌠

0

∞

ω dω J
0
(ω θ) Φ

ω
(z) [1 – χ(ω)] , (16) 

 

where J
0
(x) is the Bessel function, and Φ

ω
(z) and χ(ω) are 

the Bessel images of the angular and the scattering phase 
function, respectively. 

The analysis of experimental data and numerical 
calculations1-3,18 shows that the scattering phase functions 
of large scattering centres in sea water, clouds, fogs, 
aerosols, and so on, within the scattering angles 
γeff n γ n 1 have a power–law (or close to it) shape 

χ(γ) ∼ γ–2(1+ν), where the value of the parameter ν usually 
lies in the interval 0.25 ≤ ν ≤ 0.75. The scattering phase 
function for a turbulent medium has the same view2 
(ν = 5/6 is the characteristic of the Kolmogorov–Obukhov 
spectrum). Taking into account this fact, we shall use below 
a two–parameter relation for χ(γ) which in a small–angle 
approach (γ n 1) has the form  

 

χ
ν
(γ) = 

ν γ 2ν
eff

π[γ2
eff + γ2](1+ν)

 . (17) 

 

Value (17) satisfies the condition of normalization (1). The 

values γeff <∼ 5° and 6–15° are characteristic of sea water and 

clouds.1–13,18, respectively. The value ν = 1 agrees with the  
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Rutherford scattering law, and ν = 1/2 leads to the 
Henny–Greenstein scattering phase function.1,2,11 

It is not difficult to calculate the Bessel image of 
scattering phase function (17) 
 

χ
ν
(ω) = 

21–ν

Γ(ν)
 (ωγeff)

ν K
ν
(ωγeff) , (18) 

 

where Γ(ν) is the γ–function, K
ν
x) is the Macdonald 

function. In the depth region, where <θ2>z . γ 2
eff the main 

contribution to integral (16) comes from the values 

ω <∼ 
1
θ n γ–1

eff and Eq. (18) can be expanded in a series over 

the small parameter ωγeff n 1. While making this expansion 

one can calculate the coefficient of angular diffusion 

D
ν
 = 

1
2 σ<1 – cosγ>. This expansion has different form for 

ν > 1 and ν < 1 (see Refs. 9 and 20) 
 

1 – χ
ν
(γeff ω n 1) ≈ 

⎩⎪
⎨
⎪⎧
D

ν

σ  ω2 ,  for ν – 1 . γ 2
eff;

Γ(2 – ν)
νΓ(1 + ν) 

D
ν

σ  ω2ν , for 1 – ν . γ2eff .
 (19) 

 

It can be seen from Eq. (19) that when ν > 1 the value 

(1 – χ
ν
(ω)) ∼ ω2 and when ν < 1 (1 – χ

ν
(ω)) ∼ ω2ν, i.e., 

it strongly depends on ν. If we formally assume ν = 1 in 
Eq. (19), then both expansions are joined. 

 
THE DEPTH REGIME 

 
Not pretending to be able of determining the angular 

function Φ(z, θ) at any depth, we should like first to 
consider the case of relatively large depths, where 

 

<s>z – z >∼ la , i.e., 
k
2 ⌡⌠

0

 <θ2>z′ dz′ >∼ 1 . (20) 

 

At large depths the factorization of the radiation angular 
spectrum1–7 is feasible 
 

Ias(z; q) = aexp (–kz) Fas(q) . (21) 
 

Taking the condition of normalization (11) into account the 
factorization means, in fact, that the angular function 
Φas(θ) = Φ(z → ∞; θ) is independent of the depth. The 

value k is the extinction coefficient of the medium at large 
depths. Following Ref. 12, the variance <θ2>

∞
 of the 

angular spectrum at large depths is determined as 
 

<θ2>
∞
 = 2π ⌡⌠

0

∞

θ3Φas(θ) dθ , and k = k [ ]1 + 
1
2 <θ2>

∞
 . (22) 

 

In the case of large depths Eq. (13) takes the form  
 

k
2 [θ2 – <θ2>

∞
] Φas(θ) = B

∧
Φas , (23) 

 

where B
∧

Φas is determined by Eq. (16). To solve Eq. (23) 

approximately in the case of ν < 1, we are interested in, let 
the sought–after angular function Φas(θ) be of the form 

which is similar to scattering phase function (17) but 
decreasing with increasing θ more rapidly than θ–4 

 

Φas(θ, α, <θ2>
∞
) = 

1 + α
π  

(α <θ2>
∞
)1+α

[α <θ2>
∞
 + θ2]2+α

 , (24) 

 

where α > 0. Equation (24) satisfies the condition of 
normalization (11) and formula (22) for <θ2>

∞
. The values α 

and <θ2>
∞
 are free parameters. To determine them one 

should construct a relevant system of two equations. 
The first equation of such a system follows from 

Eq. (23), in which we assume that θ2 = <θ2>
∞
, 

 

B
∧

Φas⏐θ2=<θ2>∞
 = 0 . (25) 

 

The Bessel image of the angular function is determined by 
the expression similar to Eq. (18) 

 

Φas(ω, α, <θ2>
∞
) = 

2–α

Γ(1 + α)
 (ω α <θ2>

∞
)1+α × 

 

× K
1+α

 (ω α <θ2>
∞
) . (26) 

 

Substitution of Eqs. (24) and (26) into Eq. (25) in 
which the collisional integral is taken in the form of 
Eq. (16) and calculation of corresponding integrals reduces 
condition (25) to an equivalent relation 

 

2
F

1( )2 + ν + α, 1 + ν; 1; – 
1
α  = 0 , (27) 

 

where 
2
F

1
(a, b, c, z) is the hypergeometric Gaussian 

function.19 
Thus, in the first approach the value of the parameter α 

can be determined using the small parameter γ2
eff

/<θ2>
∞
 n 1 

independently of <θ2>
∞
, being only a function of ν, i.e., 

α = α(ν). Equation (27) was solved numerically (the 
function α(ν) is shown in Fig. 1). At the same time in some 
particular cases the study can be carried out analytically, 
yielding α(ν → 0) ≈ ν, and α(ν → 1) ≈ 5.14/(1 – ν). When 
α = 1, Eq. (27) is reduced to a simpler transcendental 
equation for determining the value ν 

 

2

ν2 cotan 
πν
2  = 

2 + ν
1 + ν 

⎣
⎢
⎡

⎦
⎥
⎤Γ( )ν2

Γ( )ν + 1
2

2

 . (28) 

 

It follows from this equation that ν ≈ 1/3. This agrees with 
the result obtained by the direct solution of general 
equation (27). 
 

 
 

 FIG. 1.  FIG. 2.. 
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The second equation for determining <θ2>
∞
 is 

constructed using the condition of correct normalizing the 
angular function of the second approach obtained at the 
iterations of Eq. (23), provided that 2(ν) has been already 
determined from Eq. (27) 

 

2π 
⌡
⎮
⌠

0

∞

θ dθ 
⎩
⎨
⎧

⎭
⎬
⎫2

k 
B
∧

Φas

θ2 – <θ2>
∞

 = 1 . (29) 

 
After simple transformations one can find from 

Eq. (29) the value of angular variance in the depth 
regime  

 

<θ2>
∞
 = ⎣
⎡

⎦
⎤8d

ν
 
D

ν

k

1/1+ν

 , (30) 

 
where D

ν
 is the coefficient of angular diffusion, the 

function d
ν
 ≡ d(ν) is represented by the expression 

 
 

d
ν
 = 

4ν–1

ν  
Γ(2 + ν + α(ν)) Γ(2 – ν)

α1+μΓ(1 + α(ν))
 b

ν
 , (31) 

 
where  
 

b
ν
 =
⌡
⌠

0

∞

dx
x – 1 2F1( )2 + ν + α(ν), 1 + ν; 1; – 

x
α(ν)

 . (32) 

 
It follows from Eq. (32) that we can represent the 

expression for b
ν
 with a sufficient accuracy (not lower than 

5%) in the form 
 

b
ν
 ≈ 

α(ν)

1.125 + α(ν) + 
π
4 ν

 . (33) 

 
In the limiting case of ν = 1 the value α → ∞ and d

ν
 = 1. 

As a result from Eqs. (24) and (30) as ν → 1, one obtains  
 

Φas(θ; ν → 1) = 
exp ( – θ2/<θ2>D

∞
)

θ <θ2>D
∞

 , 

 

where 
 

<θ2>D
∞
 = 

8D
κ  , (34) 

 
that well agrees with the results obtained using a 
diffusion approach.5–7 

The value d
ν
, as a function of ν is presented in 

Fig. 2. As can be seen in this figure in the interval 1 > ν 
 1/3, d

ν
 ≈ 1. The value determined using formulas (30)–

(32) were compared with the analogous results obtained 
using the Monte Carlo method.4 The results coincided 
accurately to the ratio D/κ that is directly associated 
with conditions of applicability of the small–angle 
approach (the results of comparison are given in Table I). 
 

TABLE I 
 

Correction to the index 
of depth attenuation 

 
<cosγ>
(<γ2>
) 

Photon servival
 probability 

Λ = 
σ

σ+k
 

 
D/κ 

Δ = 
k–k
k+s 

Δ (numerical 
calculation4)

 0.2 6.25.10–3 0.0542 0.0518 

 0.95 0.4 1.67.10–2 0.0783 0.0750 

(0.1) 0.8 1.00.10–1 0.0862 0.0812 

 0.2 3.75.10–3 0.0386 0.0379 

 0.97 0.4 1.00.10–2 0.0557 0.0545 

(0.06) 0.8 6.00.10–2 0.0613 0.0587 

 0.98 0.2 2.50.10–3 0.0295 0.0294 

 0.4 6.67.10–3 0.0425 0.0422 

(0.04) 0.8 4.00.10–2 0.0468 0.0453 
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