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The poynting theorem for weakly nonlinear absorbing media under conditions of 
self-action of monochromatic waves is formulated. An analog of the Bouguer law for 
wings of spectral lines of media with cubic nonlinearity is considered. It is shown that 
at large optical depths (of the order of several units) the difference from a classical 
form is not so important.  

A problem of determining experimentally some constants of nonlinearity is raised.  
 
1. Equations for a field in an isotropic nonmagnetic 

medium with time dependence separated out in the form of 
the functional factor exp (–iωt) satisfy the equations 
written in the time–independent form1  

 

rot E – ik
0
H = 0 ,  rot H + ik

0
ε
L
E = 0 , (1) 

 

where k = ω/c and ε
L
 is the dielectric constant.  

In the case of sufficiently strong fields linear 
equations (1) can be given in the form 

 

rot E – ik
0
H = 0 ,  rot H + ik

0
(ε

L
 + ε

NL
(⏐E⏐2)) E = 0 . (2) 

 

Equations (2) describe self–action of plane monochromatic 
waves. If we consider the first nonzero correction to ε

L
 

which depends on the field strength ("cubic" media), then 
the latter equation takes the form  

 

rot H + ik
0
(ε

L
 + ε

2
⏐E⏐2) E = 0 . (3) 

 

It is assumed that  
 

E = ρ(S) E ,  S = ⏐E⏐2 , (4) 
 

where ρ is the complex function, in general ε
2
 is also a 

complex quantity. It is also assumed that the fields are 
locally transverse. In the geometric optics the 
approximation S = ⏐E*×H + E×H*⏐ = ⏐S⏐ , where S is the 
Poynting vector (necessary factors, in units of CGSE are 
omitted); grad S = – 2 k

0
κS (this relation follows from the 

Poynting theorem for the vector Sn, n is the unit vector 
along the Poynting vector, divn = 0); ε

L
 = m2, m = n + iκ 

is the complex index of refraction.  
Along with definition (4) of a nonlinear electric field 

we define with the help of Eq. (2) the nonlinear magnetic 
vector  

 

H = ρ H + 
1

ik
0

 [∇ρ × E] . (5) 

 

From Eqs. (1) – (3) we obtain an equation for the function ρ. 
Solutions of this equation for the spectral line wings are 
given in Ref. 2. In this paper they are used to study the 
monochromatic radiation damping in weakly nonlinear 
media.  

2. Let us formulate the Poynting theorem for the case 
of self–action effects in a monochromatic field. Using the  

definitions of the electric (4) and magnetic (5) nonlinear 
fields one can construct for the Poynting vector the 
combination  

 

E*×H = ⏐ρ⏐2 E*×H + 
1

ik
0

 ρ* E*×[∇ρ×E] ,  

 

and then, based on formulas of vector analysis, we obtain  
 

div[E*×H] = div(⏐ρ⏐2 [E*×H] + ρ* {[∇ρ×H] E* – 
 

– [∇ρ×E] H*} – 
k

0

i  ε
NL

 ⏐ρ⏐2 ⏐E⏐2 .  

 

Combination of this expression with its complex conjugate 
gives  

 

div Π = ⏐ρ⏐2 div S – 2k
0
 (Im ε

NL
) ⏐ρ⏐2 S ;  

 

Π = E*×H + E×H* ,  Π = ⏐Π⏐ . (6) 
 

By substituting the relation div S = –σS from the linear 
theory (σ is the absorption coefficient, σ = 2 k

0
κ) into 

Eq. (6) we finally have  
 

div Π = – (σ + 2k
0
 Im ε

NL
) ⏐ρ⏐2 S (7) 

 

or for cubic media  
 

div Π = – (σ ± 2k
0
 ⏐Im ε

2
⏐ ⏐ρ⏐2 S) ⏐ρ⏐2 S . (8) 

 

In Eq. (8) the lower sign stands for the decrease in the 
effective absorption coefficient and, therefore, it is related 
to a partial clearing–up of the medium. According to Ref. 2 
this case is associated with the solution of the equation for 
function ρ in the form of a hyperbolic secant.  

3. Similarly, for the nonlinear Poynting vector one can 
write  

 

Π = ρ* E* × ( ρ H + 
1

ik
0

 [∇ρ × E]) + c. c. =  

 

= ⏐ρ⏐2 S – 
S

ik
0

 {ρ ∇ρ* – ρ* ∇ρ} .  

 

The expression in braces gives  
 

Π = ⏐E⏐2 {1 + P} ; (9) 
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P = 
2kS
i  ⎣
⎡

⎦
⎤

⎝
⎛
⎠
⎞ρ⋅

ρ
* – 

ρ
⋅

ρ  . (10) 

 

Dotted ρ denotes here the first derivative of the function 
ρ with respect to its argument. An explicit form of the 
expression (10) is given below. Thus the field intensity should 
be determined not by the value ⏐E⏐2 (as in Ref. 2) but by the 
Poynting vector (9). Let us then clarify the effect of the 
correction P on the squared amplitude of the field and show 
that this correction cannot be neglected.  

Using the approaches described in Ref. 2 when 
calculating Eq. (10) we obtain  

 

Π = ⏐E⏐2 
⎩
⎨
⎧

⎭
⎬
⎫

1 – 
2k
i  ( )2iΦ′

ξ
 + i 

n
k  .  

 

According to Ref. 2, for Im ε
2
 = δ < 0,  

Φ′
ξ
= 
β
2 th ϑ, ϑ = 

1

2
 ξ – C, β = n/κ, ξ = – τ = – σz (optical depth)  

E = 
A

x1/2 sech (ϑ) exp (iΦ(ϑ)) E(z),  x = exp (– τ),  

and  A2 = 
3
4 β/⏐δ⏐ S

0 
,  

 

where S
0
 is the intensity of the field incident on the 

medium, A is the amplitude factor, C is the additive 
constant, and z is the distance.  

It should be noted that the radiation damping is 
described by a downward branch of the function sech ϑ. For 
the Poynting vector we have  

 

Π = ⏐E⏐2 
⎩
⎨
⎧

⎭
⎬
⎫

1 – 2n 
⎣
⎡

⎦
⎤1 – th ( )τ

2 + C  (11) 

 

when τ = 0 (upon entrance into the medium)  
 

Π = A2 sech2(C) {1 – 2n (1 – th C)} ⏐E
0
⏐2 . (12) 

 

When C = 0 we have th 0 = 0, and, therefore, the value Π 
becomes negative. The condition Π > 0 can hold only when 
C ≠ 0. As a result it is necessary that  

 

A2 sech2(C) {1 – 2 n (1 – th C)} = 1 . (13) 
 

According to relation (13) one can see that the dependence on 
the field E

0
 incident on the medium is extended to the 

additive constant C. Table I shows in what manner the choice 
of this additive constant is related to the normalized constant 
A for n = 1 (and in terms of this constant to the value of the 
initial field E

0
).  

 

TABLE I.  
 

 
C

 
 

th C 

 
2th C – 1

 
 

sech C A2 = 
1

sech2C
 

1
2 th C – 1 

0.55 0.501 0.001 0.866 1335 
0.95 0.739 0.480 0.673 4.60 
1 0.762 0.523 0.648 4.55 
2 0.964 0.928 0.266 15.23 
3 0.995 0.990 0.099 103 
5 0.9999 0.9998 0.013 5918 

 

As follows from the table, the curve described by 
relation (13) has a minimum. We interpret the quantity C ∼ 1 
related to this minimum to be connected with the maximum 
field E

0
 which is admissible for the model of a cubic medium2 

to work.  

When C > 1 the quantity E
0
 decreases and the value Π 

for C  5 completely corresponds to the ordinary Bouguer 
law for attenuation of radiation  

For example, for C = 1, we have  
 

Π = 4.55 sech ( ) – 
τ
2 – 1  

⎩
⎨
⎧

⎭
⎬
⎫

2 th ( ) 
τ
2 + 1  – 1 ⏐E

0
⏐2. (14) 

 

At large optical depths (ϑ is of the order of several units)  
 

th ϑ ∼ 1, sech ϑ ∼ 2 exp (– ϑ),  
 

and, therefore,  
 

Π(C = 1) ≈ 2.46 exp (– τ) ⏐E
0
⏐ . (15)  

 
For large amplitudes (less than S

0
) the numerical factor in 

Eq. (15) decreases, and for a sufficiently small S
0
 the 

minimum value of this factor is close to unity. For example,  
 

Π(C = 5) ≈ 1.07 exp (– τ) ⏐E
0
⏐2 . (16) 

 

Thus, it follows from the expression for Π that the energy 
flux in the medium (n, κ, ε

2
) depends not only on the field 

amplitude but also on the phase characteristics of the field. 
When Im ε

2
 < 0 there occurs a partial clearing–up of the 

medium.  
4. Analogous treatment of the opposite sign in Eq. (8) 

forces us to consider the solution for the function ρ in the 
form of cosech ϑ (Im ε

2
 > 0). Here  

 

Φ′
ξ
 = 

β
2 cthϑ,  E = 

A

x1/2 cosech (ϑ) exp (iΦ) E
L
  

 

 

and we can write  
 
Π = A2 cosech2(ϑ) {1 – 2n (1 – cth ϑ)} ⏐E

0
⏐2 .  

 

Upon entrance into the medium (τ = 0)  
 
Π = A2 cosech2(C) {1 – 2n (1 – cth C)} ⏐E

0
⏐2 .  

 

Corresponding estimates of the A dependence of C for 
n = 1 and Π(τ = 0) = S

0
 are given in Table II.  

 
TABLE II.  
 

C cth C 2 cth C – 1 cosech C A2
 

0.01 100.0 199. 100 50.25 
1 1.3130 1.6260 0.8509 0.8493 
2 1.0373 1.0746 0.2757 12.2428 
5 1.0001 1.0002 0.0135 5486 
 

Here one can also note that the value of the constant 
C ∼ 1 is related to the maximum value of the field E

0
 which is 

admissible for the model of a cubic medium to be applicable. 
When the field E

0
 decreases (i.e., with increasing A) the law 

of radiation attenuation follows the standard form of the 
exponential decay.  

Following the above procedure let us consider the case 
of C = 1. For larger ϑ we have  

 
cth ϑ ∼ 1 + 2 exp (– 2ϑ),  cosech ϑ ∼ 2 exp (– ϑ),  
 

Π(C = 1) ≈ 0.46 exp (– τ) ⏐E
0
⏐2 ,  (17)  
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here the preexponential factor is less than unity as it 
follows from Eq. (8) with the plus sign. For C = 5 we have  

 
Π(C = 5) ≈ 0.996 exp (– τ) S

0
 . (18) 

 

In general, the sign of the quantity Im ε
2
 and its value 

must be determined from specific conditions of a problem 
under study.3  

It should be noted that in addition to the discussed 
task of the radiation damping another aspect of this problem 
is quite interesting. It is related to the observation of  

spectral lines and possible experimental determination of 
the constant ε

2
.  
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