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During the gas–dynamic evaporation of high–melting aerosol particles in an 
intense optical field in vacuum the active condensation and formation of new particles 
takes place. The size distribution and number density of secondary particles are 
obtained using the thermodynamic method of estimating the vapor parameters.5 

 
A number of authors1,3 discussed the problem of 

propagation of powerful laser beams in the aerosol 
atmosphere, which contains high–melting particles (smog, 
soot, etc.). It is essential, that for carbon aerosol and for 
the intensity of the incident radiation of the order of 
108 W/m2 and higher the evaporation of particles occurs 
simultaneously with burning.4 In the case of interaction of 
radiation with particles under conditions close to vacuum 
(for example, in the upper atmospheric layers) the burning 
process is absent and there takes place a gas–dynamic 
evaporation.5 The results obtained using the model from 
Ref. 5 make it possible to raise a problem on the optical 
section of the system "particle + condensate".  

The size distribution functions of secondary particles 
and the size of secondary particles as a function of different 
parameters of initial particles are found based on the use of 
the results from Ref. 5 and it is assumed that the 
temperature of the particle surfaces is preset.  

As was shown in Ref. 6, there exists a relatively small 
spatial region, where the degree of supersaturation is 
noticeably different from unity. An intense nucleation 
processes take place in this region. Outside this region the 
expansion of vapor takes place according to adiabate of a 
two–phase system, the degree of supersaturation vanishes, 
and the excess of vapor condensates on the condensation 
nuclei generated earlier. Taking into account this fact, the 
secondary particle distribution function f(t, a, r) will 
satisfy the equation  
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where t is time, a is the size of secondary particles, r is the 

distance to the particle center, a
.
 is the rate of the particle 

radius variation, υ is the mass velocity, and ac is the 

minimum critical size, which the condensation nucleus must 
have in order to be the center of a new phase, called the k–
phase. It is believed7 that ac = 10–9 m. The values a(t), υ(r) 

have been determined in Ref. 5.  
The right part of Eq. (1) describes the birth of the 

secondary particles of the size ac in the infinitely narrow 

spherical layer with r
0 

in radius, A(r
0
, ac) is the dimensional 

parameter whose form will be found below, and δ(r – r
0
) and 

δ(a – ac) are δ–functions.  

A solution for f(t, a, r) can be obtained analitically in 
the above–accepted approaches. Using the equation of 

continuity 
∂r
∂t

 + (∂, ∂t) (r2ρυ) = 0 and introducing the  

substitution of f
0
 = f/ρ(r), where ρ(r) is the density of the 

system "vapor + secondary pacticles" found in Ref. 5, we 
obtain the equation for the function f

0
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In order to solve Eq. (2) let us make the Laplacian 
transform with respect to the variables a and t with the 
following boundary conditions:  
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where f
=

0
(p, q, r) is the transform of the function f

0
(t, a, r). 

Assuming that υ and a are fixed along the integration 

lines8, the equation for the transform f
=
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written in the form 
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Solution of Eq. (3) has the form 
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0
,

1, if r ≥ r
0
;  

 

ρ(r
0
) and υ(r

0
) are the boundary conditions for the velocity 

and density of the mixture set in Ref. 5.  
By introducing the following notation:  
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and appling the inverse Laplacian transform with respect to 
the variables q and p, we can find the expression for the 
function f

0
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By integrating over the complex plane and taking into 
account the fact that the moment of the birth of the 
secondary particles is selected as an origin moment of time, 
scale, i.e., Ψ(r

0
) = 0, the solution of Eq. (1) will be written 

after transformations in the form  
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It can be seen from Eq. (7) that the size distribution 
function of the secondary particles is independent of time in 
the spherical layer r

0
, but it is dependent on the boundary 

conditions of the problem and on the medium parameters.  
The value Ψ(r) in the δ–function is the size of the 

secondary particles at the distance r from the primary 
particle. It can be seen from Eq. (5) that in order to find 
the value Ψ(r) it is necessary to know the rate of variations 
of the secondary particle radius. However, one can assume 
that the vapor is always in the thermodynamic equilibrium 
with the condensate, and, therefore, all excess of the vapor 
condenses on the secondary particles practically 
immediately. In this case the size of the secondary particles 
at any distance r from the primary particle can be found as 
follows.  

Since the mass of the evaporated substance in the 
volume dV at the distance r from the particle is  

dm = xρme dV, 

and the mass of a secondary particle is 
4
3 πρκa

3(r), the 

expression for the concentration of the secondary particles 
has the form 
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where me and ρ
κ
 are the molecule mass and the density of 

evaporating substance, respectively.  

In the region, in which the condensation nuclei are 
formed, a(r

0
) is equal to ac, i.e., to the minimum critical 

size. Therefore, the initial concentration n(r
0
) can be 

calculated from Eq. (8).  
The value of n(r) is found from the condition  
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Using the well–known relation  
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and the specific view of function (7), we find 
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and 
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Thus, finally the distribution function takes the form 
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FIG. 1. Concentration of the secondary particles as a 
function of the inverse distance from the primary particle 
with a size of 100 μm.  
 

 
 

FIG. 2. The size of the secondary particles as a function of 
the inverse distance from the primary particle with a size of 
100 μm. 
 

The solution for the distribution function of the 
secondary particles (10) is the result of the taken–above 
approaches: the δ–function describes the appearence of 
particles of a certain size a at the distance r from the primary 
particle.  

The unknown value a(r), which characterizes the growth 
of particles, can be found from Eqs. (8) and (9). The result is  
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relation (11) can be rewriten in the form 
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where  
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If the experimental values of the size of the secondary 
particles a(r) is known one can find from Eq. (12) the degree 
of the vapor condensation in the vicinity of an evaporating 
particle as well as calculate the fields of temperature, density, 
and pressure by the model proposed in Ref. 5. The value x(r) 
depends on the substance of the primary particle and on the 
boundary conditions of the problem.  

The concentration of the secondary particle n(r) and 
the function of growth of the secondary particles size a(r) 
as a function of the inverse distance from the primary 
particle, are shown in Figs. 1 and 2, respectively. 
Calculations were made for the primary particle with a size 
of 100 μm.  
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