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The results of experimental and theoretical studies of compensation for nonlinear 

distortions by means of the adaptive control of light beam in the basis of the lowest–
order wave aberrations are presented. It is demonstrated that for a wide range of 
variation of physical parameters the modal control of the beam phase significantly 
improves the spatial localization of radiation energy. Applicability of the similarity 
theory, developed in nonlinear optics, is experimentally proved. 

 
INTRODUCTION 

 
The principle of modal formation of the beam phase is 

being increasingly employed in adaptive optics. Such an 
approach is based on the results of theoretical studies of mode 
composition of phase distortions of optical beam propagating 
through both nonlinear and randomly inhomogeneous media as 
well as by advances in designing the wavefront sensors and 
correctors and in construction of the algorithms for adaptive 
control. For example, the lowest–order aberrations produce 
the main contribution to the phase distortions of the beam 
under conditions of stationary wind–induced refraction being 
the lowest threshold nonlinear atmospheric effect.1,2 
Perturbations of the beam phase in the turbulent atmosphere 
may be represented in the form of an expansion in a system of 
the Karhunen–Loev functions or Zernike polynomials.3 
Starting from the third power term, the coefficients of the 
expansion in a system of Zernike polynomials rapidly decrease 
becoming negligible. For this reason forming the beam phase 
as a superposition of the base modes is undisputedly 
advantageous, because the needed number of control channels 
is significantly reduced thereby improving the stability of the 
adaptive system. Simultaneously modal approach makes it 
possible to monitor the accuracy of correction of phase 
distortions. 

At present various types of wavefront correctors have 
already been designed intended to modal formation of the 
phase of the light beam. The most promising among them are 
those with nonlocalized response functions. For example, for 
the bimorph mirrors with 13 drives the deflections were 
obtained which coincide with the first Zernike polynomials to 
an accuracy of 10%. The sensitivity then was about 
0.03 μm/V (see Ref. 4). A flexible mirror with six 
electromechanical drives clamped at its contour reproduces the 
first five Zernike polynomials to an accuracy of 20% for the 
range of displacement of the reflecting surface up to 300 μm 
(see Ref. 5). Apparently, modal formation of the beam phase 
can be also implemented by a corrector with a local response 
function if the number of its drives is sufficiently large (up to 
several tens). 

In systems for modal control it is preferable to use the 
wavefront sensors, which yield the information on the mode 
composition of the distorted wave.6 To organize operation of 
such adaptive systems, algorithms have been constructed 
which operate in the space of the base modes. One of such 
algorithms uses the multicriterional approach, which permits 
one to decouple the channels of modal control thereby 
improving the operational stability of the system affected by 
natural noises.7 

Despite such significant advances in developing the 
components of the system of adaptive optics, we still have  

comparatively few experimental studies performed with the 
help of the working set up. 

The present paper is devoted to studying an adaptive 
system for modal control intended to compensate for nonlinear 
phase distortions of a laser beam propagating through an 
absorbing medium. The principal goal of the study is obtaining 
a quantitative estimate of the efficiency of modal control of 
the lowest–order in lower aberrations for the spatial location 
of the beam under conditions of wind–induced refraction. This 
paper continues and generalized the cycle of studies presented 
elsewhere.7,9,10 

 
THE ANALYSIS OF MULTICRITERIONAL 

REFRACTION ALGORITHM FOR CORRECTION OF 

THE WIND–DRIVEN 

 
The principal idea of the multicriterion algorithm 

consists in adaptive control based on optimizing against the set 
of scalar criteria describing the quality of compensation for the 
corresponding base mode of the corrector. Such an approach 
results in eliminating the cross talk between the different 
control channels there by speeding up the convergence and 
improving the stability of the iterative control. Let the beam 
phase be controlled in the basis of the lowest–order optical 
aberrations, which are described by the first five Zernice 
polynomials (tilts, axisymmetric focusing, and astigmatisms). 
As the analysis of the case of the linear and homogeneous 
medium showed,9 the following functionals of distribution of 
beam intensity I(x, y, z0) in the focusing plane z0 may be used 

for such quality criteria: 
 

F
∧

1[I] = M{x} = xz ; F
∧

2[I] = M{y} = yz ; 
 

F
∧

3,4[I] = M{(x – xz)
2 ± (y – yz)

2} = a2
x ± a2

y ; 
 

F
∧

5[I] = M{(x – xz) (y – yz)} = axy , (1) 
 

where 
 

M{f(x, y)} =
⌡⌠⌡⌠

f(x, y) I(x, y, z0) dx dy/
⌡⌠⌡⌠

I(x, y, z0)dx dy. 

 

The values xc and yc denote the coordinates of the 

energy center of gravity, and ax and ay give the effective 

beam size over its cross section. The functionals F
∧
1 and F

∧
2 

specify the position of the energy center of gravity of the 

beam, F
∧
3 determines the focusing, F

∧
4 and F

∧
5 describe the  
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roundness of the beam image associated with the 
astigmatisms of the wavefront. 

Since these functionals cannot completely decouple the 
channels, step–by–step compensation of aberrations was 
used in the experiment to improve the stability of the 
iterative process of control.9 

When such an approach is expanded to cover the 
problems of control of the beam phase in the nonlinear 
medium, one should account for arising the additional cross 
talk between the various control channels.10 The principle 
of superposition breaks down in the nonlinear media, so 
that in the case of control for some channel all intensity 
functionals changes.1 This may result in a retarded 
convergence of iterative focusing, and even in its breakdown 
for high nonlinearities. The problem of theoretical 
investigation of adaptive control of the beam phase in a 
nonlinear medium, based on multicriterional algorithms 
became very important. 

The principal regularities of multicriterional control of 
the phase in the basis of the lowest–order optical 
aberrations (up to the second order, inclusively) may be 
studied within the framework of the abberation–free 
approximation. The radiation field under conditions of 
stationary wind–induced refraction is then represented as a 
Gaussian–like beam whose phase can be described by the 
second order polynomial: 

 

E(x, y, z) = A(z) exp 
⎩
⎨
⎧

⎭
⎬
⎫

– 
(x – r(z))2

2a2(z)
 – 

y2

2b2(z)
 exp{iϕ(x, y, z)} ; 

 

ϕ(x, y, z) = κ 
⎩
⎨
⎧

⎭
⎬
⎫

θ(z) (x – r(z)) + 

Sx

2  (x – r(z))2 + 

Sy

2  y2  , (2) 

 

where θ(z), Sx(z), and Sy(z) are the tilt and the curvatures 

of the wavefront; a(z), b(z), and r(z) are the effective size 
and the shift of the beam's energy center of gravity. Wind 
direction is assumed to coincide with the OX axis. 

The beam phase ϕ(x, y, 0) at the transmitting aperture 
is formed as a superposition of base modes reproduced by 
the wavefront corrector. For a flexible controllable mirror, 
whose deflection is described by the modes ωj(x, y), the 

phase ϕ(x, y, 0) is equal to 
 

ϕ(x, y, z) = 2κ ∑
j=1

5

  Uj ωj (x, y) , (3) 

 

where Uj are the control coordinates. In the case in which 

Zernike polynomials are selected chosen for the modal basis, 
the control coordinates are related to the coefficients of 
phase expansion (2) in the plane z = 0 by the formulas 

 

U1 = θ(0) ;  U3 = 
Sx(0) + Sy(0)

2  ; 

 

U4 = 
Sx(0) – Sy(0)

2  . (4) 

 

In the case of stationary wind–induced refraction, the 
following similarity criteria are chosen for the problem of 
beam phase control:11 path length z/κa2

0 expressed in 

diffraction lengths; optical depth at diffraction distance 

an0 κa2
0; parameter of nonlinearity R

υ
 = 

2κ2α n0a0

π Cp ρ  
∂n
∂T 

P0

V  ; 

dimensionless coordinates of control of tilt, focusing, and 
astigmatisms of the wavefront U1 κa0, U3 κa2

0, U4 κa2
0. 

To determine the parameters of the beam (2) along the 
path, a system of ordinary differential equations was 
derived using the variational approach.12 Solving that 
system for several control coordinates (U3, U4) the values 

of the functionals F
∧

3, F
∧

4 were found which characterize the 

spatial localization of the beam for various conditions of 
propagation. 

 

 
 

FIG. 1. Coordinates of the minimum of functional of 

focusing F
∧

3 and curves of zero functional of astigmatism F
∧

4 

in the plane of modal control (U3, U4) for different values 

of the nonlinearity parameter R
υ
. Path length z = 0.5κa0

2. 

 
The degree and character of the effect of nonlinear 

inreaction between the radiation and the medium on the 
process of multicriterional control is vividly seen from the 

topology of the functionals F
∧

3 (focusing) and F
∧

4 

(astigmatism). Fig. 1 presents the coordinates of the 

minimum of the functional F
∧

3 and the zero level curves for 

the functional F
∧

4 in the plane of modal control (U3, U4) for 

a number of values of the nonlinearity parameter R
υ
. In a 

linear case the positions of that minimum of the functional 

F
∧

3 and of the zero value of the functional F
∧

4 coincide with 

each other (see points U3 = 2.0 and U4 = 0.0 in Fig. 1). 

This fact results in a maximally focused axisymmetric beam. 

With the increase of nonlinearity the points of 
extremum split in the space of control coordinates 
(U3 , U4). Namely, if the initial phase profile at the 

transmitting aperture minimizes the functional of focusing, 

the axial symmetry in the beam image is absent (F
∧

4 ≠ 0). 
Conversely, if the beam is axisymmetric in coordinates 
(U3 , U4), belonging to the curve of zero value of the 

functional F
∧

4, the effective radius of the beam exceeds 

extremely small. It then follows that the adaptive control of  
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the beam phase in the nonlinear medium based on 
multicriterional algorithm with step–by–step correction for 
astigmatism U4 first, and focusing U3 second, may result in 

temporal oscillations of the parameters of the field. That 
statement is illustrated by Fig. 2 which shows the change of 
the peak intensity of the beam in the focusing plane in the 
process of multicriterional control and control based on 

gradient optimization against the single scalar criterion F
∧

3. 

Note that irrespective of the gain in the feedback loop (the 
gradient step size), multicriterional, control results in speeding 
up of convergence to peak intensity in as comparison with a 
single criterion control. 

 

 
 

FIG. 2. Variation of the peak intensity of the beam Ip in the 

process of control by multicriterional algorithm (solid line) 
and by method of gradient optimization against a single 

scalar criterion F
∧

3 (dashed line). ⏐R
υ
⏐ = 14, z = 0.5κa0

2, and 

N is the iteration number. 
 

However laboratory tests of Ref. 10 do not reveal any 
breakdown of adaptive control after the range of optimal 
compensation for nonlinear distortions was attained. It may be 
explained by the fact that during the experiments in the range 
of optimal compensation the gradient of the astigmatism 

functional ⏐F
∧

4⏐ can not be distinguished from the background 

noise level due to its small value. 
 

EXPERIMENTAL STUDIES OF THE EFFICIENCY OF 

MODAL CONTROL 

 
Experimental studies were performed using the 

laboratory model of the adaptive optical system described in 
Ref. 9. The principal component of the set up was the flexible 
controllable mirror capable of reproducing the mode basis 
consisting of the first five Zernike polynomials with 
satisfactory accuracy.5 

Propagation of laser beam under conditions of wind–
induced refraction was modeled using a rotating vertical cell 
filled with alcohol solution of fuchsine (the cell length was 
0.7 m and the absorption coefficient of the solution was 
1.0 m–1). 

Beam parameters were measured in the process of control 
by a specially designed recording system, which contained a 
standard TV camera interfaced with a computer.13 Beam image 
was recorded in a plane located at a distance of 12 m from the 
exit window of the cell, which corresponded to the far zone of 
diffraction of the beam. From that image, the computer 

calculated the integral characteristics of the beam needed for 
the to adaptive control. The process of such control was 
implemented by a multicriterional algorithm of correction of 
aberrations.10 

Experiments were performed with the us of the TEM00 

mode of an Ar–laser at λ = 0.488 μm, the beam radius upon 
entering the medium was a0 = 1.2 mm. 

Below we present the results of three series of 
experiments on the adaptive compensation for the distortions 
caused by wind refraction at different speeds of flow 
(υ = 1.1, 2.0, and 3.0 mm/s). Measurements were performed 
with different input radiative power (P = 0 – 200 mW) 
during each series. Since one and the same value of the 
dimensionless parameter R

υ
 is attained different speeds t and 

powers P, results from each series are only given as functions 
of R

υ
. 

a) Effective beam size. The two effective beam radii in 
the directions parallel ax and perpendicular ay to the flow 

were calculated from the beam image from formula (1). For 
measurements in the far zone of diffraction effective radii of 
the beam determine its angular divergence. 

 

 
 

 
 

FIG. 3. Effective beam size ax (filled squares and circles) 

and ay (empty squares and circles); squares: υ = 1.1 mm/s; 

circles: υ = 2 mm/s; triangles: υ = 3 mm/s. Dashed lines: in 
the "off" mode of control; Solid lines: in the "on" mode of 
control. a) effective size ts. nonlinearity parameter R

υ
. b) 

control efficiency η ts. nonlinearity parameter R
υ
. 

 
Fig. 3a shows the dependence of the effective size of the 

beam on the nonlinearity parameter R
υ
, obtained in both "off" 

and "on" modes of the system of adaptive control. 
First of all the satisfactory agreement between the 

experimental points obtained at various values of the physical  
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parameters of speed υ and power P, which, however, 
correspond to one and the same value of the dimensionless 
nonlinearity parameter R

υ
, should be noted That testifies to 

the applicability of the similarity theory to interpretation of 
the results of laboratory modeling of propagation of intense 
laser beams through the atmosphere and of the adaptive 
control of the beam phase. 

When control is "off", the effective size of the beam 
along and across the flow typically differ quite strongly. This 
the characteristic feature of manifesting the anisotropy of the 
thermal lens induced in the moving medium by the beam. As 
can be seen from the figure, in the process of control of the 
base modes of focusing and astigmatism we obtain a significant 
reduction of the effective beam size in the far zone of 
diffraction. The control brings the angular divergence of the 
beam in a plane perpendicular to the flow, close to that in the 
plane parallel to that flow. 

To give the numerical estimate of control efficiency, 
we may introduce the value η given by the formula 

 

η = 
a0
x, y – aAx, y

a0
x, y – ad

 , (5) 

 

where a0
x, y are the beam radii prior to the control, and aA

x, y 

are these radii after control; ad is the diffraction limited 

radius of the beam in the absence of nonlinearity. The 
introduced parameter η characterizes the ratio of the 
decrease in the beam size due to control to the deviation of 
that size from the diffraction limited value in the "off" 
mode of control. Thus it defines the relative improvement of 
the beam quality. For η = 0 the parameters of the beam do 
not change, while for η = 1 a complete compensation is 
achieved and the beam size aA

x, y coincides with diffraction 

limited ad. The value η < 0 indicates that control actually 

gets worse the beam quality. 
The dependence of η on the parameter of nonlinearity, 

shown in Fig. 3b, demonstrates that control is always 
somewhat more efficient in the direction across rather than 
along the flow. The beam formed as a result of such 
correction acquires a more symmetric shape, and the values 
aA
x and aA

y are brought close in value to each other. 

With ⏐R
υ
⏐ growing, the efficiency of control decreases 

because of intensifying the amplitude perturbations and 
because the principle of additivity of the nonlinear and 
correcting phase aberrations breaks down. As for the case of 
low nonlinearities, the reason of such a decrease in control 
quality has different nature there and results from the 
specific technical parameters of the design of the mirror 
drives. The nonlinear run–on of the phase, estimated in the 
fixed–field approximation, amounts to ∼⏐R

υ
⏐z ∼ 10 rad for 

the parameter of nonlinearity ⏐R
υ
⏐ ∼ 102. For the accuracy 

of positioning the surface of phase corrector being about 
0.7λ, the relative local error in obtaining the needed phase 
profile may reach 50%. 

Thus the parameter η, introduced above, characterizes 
both the principal possibility of compensating for the 
nonlinearities and the quality of operation of a given 
adaptive system. 

b) Spatial energy localization. In connection with the 
problem of laser energy transfer through the atmosphere, 
there arises the question of change in the spatial localization 
of the light field in the process of the adaptive control. To 
obtain a quantitative estimate of spatial localization of 
radiation, we consider its normalized power, W(aW) in the 

observation plane z0 incident upon the circular aperture of  

radius aW . Since wind–induced refraction results in several 

extremuma in the distributions of beam intensity, the choice of 
the center of that circular aperture is not unique (Fig. 4a). 
During our measurements the center of that aperture coincided 
with the energy center of the beam (xc, yc). The normalized 

power W(aW) is given by the relation 
 

W(aW) = 
⌡⌠⌡⌠

S

 I(x, y, z0) dx dy/P , (6) 

 

where S is the aperture of the receiver and P is the beam 
power. 
 

 
 

FIG. 4. Intensity isophotes in the beam crosssection (far 
zone of diffraction) for ⏐R

υ
⏐ = 640. a) in the "off" mode of 

control; b) in the "on" mode of control. The origin of the 
coordinate system coincides with the beam energy center 
(zc , yc). Dashed curve shows the receiving aperture. 

 

 
 

FIG. 5. Normalized power W(aW) vs. receiving aperture 

radius aW . ad is the diffraction radius of a Gaussian beam. 

Data are obtained from the digitized image: dash–dot line 
shows the linear case R

υ
 = 0, dashed line shows the "off" 

mode of control; solid line shows the "on" mode of control. 
The PM data: dots indicate the linear case and crosses show 
the corresponding parameter after the control. 
 

The normalized power W(aW) was calculated from the 

digitized beam images recorded with the control both "on" and 
"off". The accuracy of recording of that image was limited by 
the dynamic range of the TV and was 30–40 dB. That range 
makes any complete reproduction of the intensity change 
across the beam impossible. The camera was tuned to  
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reproduce the maximum of the beam power density, so that 
the low intensity base was cut off during the measurements. 
Thus the spatial localization of the beam energy was 
overestimated. To eliminate such errors, simultaneous 
measurements of the beam power were performed using the 
power meter (PM), equipped with a tunable diaphragm. The 
limited aperture of the PM makes it impossible to measure the 
beam power W(aW), when control was "off" and the spatial 

spreading of the beam was high. 
Figure 5 shows the dependence of the normalized power 

W(aW) on the radius of the receiving aperture aW for two 

different values of the nonlinearity parameter. The curves are 
plotted from the digitized images (dots and crosses correspond 
to the PM readings). 
 

When control is "off" wind–induced refraction distorts 
the directivity pattern of the beam. Local maxima appear in 
the intensity distribution, which deteriorate the spatial 
localization of the beam energy. As a result, the power 
entering the receiving aperture decreases for higher parameters 
of nonlinearity ⏐R

υ
⏐, provided that the aperture radius 

remains fixed (Fig. 5). 
Phase correction of the lowest–order optical aberrations 

can be used to significantly improve the spatial localization of 
energy, practically over the entire range of nonlinearity 
parameter R

υ
. The fraction of power entering the prescribed 

aperture drastically increases. This effect is explained by the 
formation of a single distinctly pronounced maximum 
containing most of the beam power (Fig. 4b). 

 

 
 

FIG. 6. Energetic radius of the beam aW . a) Energetic 

radius aW at 63% level of the total power vs R
υ
. Empty 

circles and crosses: flow speed υ = 2 mm/s; squares; 
υ = 1.1 mm/s; dashed lines: without control; solid lines: 
after control. Clear circles and squares: digitized image; 
crosses; PM data. b) Energetic efficiency of control ηW vs  

the parameter of nonlinearity R
t
 at 63% and 30% levels of 

the total power and for the flow speed t = 2 mm/s. 
 

To have a numerical measure of spatial localization of the 
beam, its energetic radius aW may be introduced. It is equal to  

the radius of aperture covering a prescribed fraction of the 
total beam power. If that fraction constitutes 63% of the 
power, the values aW and ag for a Gaussian beam coincide 

with each other. 
Figure 6a shows the energetic radius of the beam aW vs 

the nonlinearity parameter R
υ
, at the level of 63%. Control 

results in a reduction of the beam energetic radius by several 
times. 

To estimate the efficiency of spatial localization of 
energy, we may introduce a variable ηW similar to η. The 

dependence of ηW on R
υ
 is given in Fig. 6b at two levels (63% 

and 30%) of the receiving power. It can be seen that the 
efficiency of energy control is quite high, amounting to about 
0.8 in the range ⏐R

υ
⏐ ∼ 300–600. 

It follows from the results shown above that when 

nonlinearities are large (⏐R
υ
⏐ >∼ 500), the efficiency of such 

control, estimated at the level of 0.63, is somewhat lower than 
that at the level of 0.30. That effect is explained by the 
formation of a narrow kern of high power density against the 
background of a wide low–intensity pedestal in the process of 
control. Observations showed that the spatial scale of that low 
intensity pedestal remains practically un changed when control 
is "on". 

 
CONCLUSIONS 

 
High efficiency of modal control of aberrations of phase 

of the first and second order aimed to compensate wind–
induced refraction of the beam is experimentally established. 
The beam size is reduced by more than a factor of two in the 
direction along the flow and by more than a factor of three 
across it. The beam image becomes almost axisymmetric. 

With the parameter of nonlinearity varying in the range 
within ⏐R

υ
⏐ ∼ 200–700, the efficiency of control, treated as 

the relative reduction of the beam cross size, reaches 60–70% 
in the far zone of diffraction. The efficiency of spatial 
localization of radiation energy reaches 80% at the level of 
63% of the total power. 

The criteria from similarity theory are experimentally 
confirmed to be applicable to nonlinear optics. They may serve 
to interpreted the results of experimental studies of the 
adaptive systems. 

In the case of wind–induced refraction, the nonlinearity 
parameter R

υ
 uniquely determines the distortions along the 

path of a prescribed length. 
When the medium is nonlinear, the control channels in 

the adaptive optical system are cross talked, and the use of 
multicriterional algorithm should result in a breakdown of the 
correction process. However, that algorithm of modal control 
results in a stable convergence of iterative process of adaptive 
correction of phase distortions under the actual conditions of 
interference. 
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