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The dependence of the criterion of beam focusing on the number of base modes 

used for wavefront control is numerically analyzed. The maximum degree of 
compensation for thermal blooming is found to depend on the product of the path 
length and the nonlinearity parameter. The relative contribution of the third– and 
fourth–order modes increases for short path lengths. 

 
The problem of increasing the efficiency of adaptive 

optical systems covers a wide range of both theoretical and 
experimental problems. Theoretical analysis based on 
numerical modeling opens the possibility of optimization of 
a whole class of the parameters of the adaptive systems. It 
is of primary interest to find the optimal basis of control of 
the beam wavefront, as well as to seek for the control 
algorithms with the highest speed and stability. The present 
paper is dedicated to investigation of such possibilities. 

 
MATHEMATICAL MODEL AND CONTROL 

ALGORITHMS OF THE ADAPTIVE SYSTEM 
 

To estimate the limiting possibilities of control, we 
restrict ourselves to the problem of compensation for 
stationary wind refraction of a Gaussian beam. This problem 
is described by the system of dimensionless equations 

 

2i 
∂E
∂z  = Δ

⊥
E + RTE , 

 

∂T
∂x = EE* , 

 

and the field within the transmitting aperture is given in 
the form 

 

E(x, y, 0) = exp [ – (x2 + y2)/2 + iU(x, y)] . 
 

The controllable wavefront U(x, y) is represented as a 
superposition of the lowest–order optical modes 

 

U(x, y) = ∑
j=3

7

 
 aj

 zj (x, y) , 

 

where z3 = 2r2 – 1 is defocusing, z4 = x2 – y2 is astigmatism, 

z5 = (3r2 – 2)x is coma, z6 = (x2 – 3y2)x is coma, and 

z7 = 6(r4 – r2) + 1 is spherical aberration, where r2 = x2 + y2. 

To reduce the volume of computations, distortion is excluded 
from the control basis, since it can be easy determined from 
geometric considerations. 

The controllable coordinate aj (j = 3, 4, 5, 6, 7) were 

chosen from the condition of the minimum energy radius of 
the beam in the image plane z = z0 
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where P0 is the total power of the beam and 
 

xc = 
1
P0

 ⌡⌠
 
 ⌡⌠

 
 x⏐E⏐2

z=z0

 
dx dy 

 

is the desplacement of the beam energy centroid. Phase was 
optimized by the method of steepest descent,1 which was 
found to reduce the number of measurements of the goal 
function in the process of numerical modeling by a factor close 
in value to the number of controllable coordinates. Light field 
was processed at the point of minimum σ in the image plane to 
retrieve the limiting energy characteristics of the beam 

[σ, xc, Jf]opt, in addition, the criterion of focusing was 

determined with an account of the windward displacement of 
the beam 

 

Jf = 
1
P0

 ⌡⌠
 
 ⌡⌠

 
 ρ (x – xc, y, St) ⏐E⏐2

z=z0

 
dx dy . 

 

Here ρ is the aperture function in the image plane and St is 

its effective radius. 
 

NUMERICAL RESULTS 
 

Estimate of the optimal number of control channels of 
the adaptive system sufficient to increase the energy 
parameters of the beam to the prescribed values in the image 
plane is of great practical interest. To this end, it is expidient 
first of all to analyze the relative contribution of modes of 
different order in the quality of correction as functions of such 
parameters of propagation as the path length and the power of 
the beam. To have an averaged description of the field and its 
structure at the object it is desirable to use the focusing 
criterion Jf calculated for a number of the radii of receiving 

aperture St, which are scaled by the radius of the diffraction 

limited focal spot in vacuum ad. The quality of correction for 

different dimension of the control basis can be conveniently 
estimated with the use of the normalized value 

 

η = Jf/(Jf)max , 
 

where (Jf)max is the maximum criterion of focusing found for 

the maximum number of base modes (up to the fourth order, 
inclusively). 

The calculated dependences of η(St) obtained for the 

path length z0 = 0.5 and the two values of the nonlinearity 

parameters R = –20 and –40 are shown in Figs. 1 and 2,  
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respectively. Pairwize comparison of curves in these figures 
show that the contribution of high–order modes increases for 
extended paths and high–power radiation. It can be seen most 
clearly from Fig. 3 which shows the dependence of the 
criterion of focusing Jf on the nonlinearity parameter R within 

a circle of the doubled diffraction radius at z0 = 0.5. For 

comparison we show here the same dependence for the case of 
an ideal corrector with infinite degrees of freedom.2 While 
practically complete compensation can be obtained for weak 
nonlinearity (⏐R⏐ = –10) when we control only by the 
curvature of the wavefront, in the case of strong nonlinearity 
(⏐R⏐ = –40) it is necessary to control by the modes up to the 
fourth order, inclusive by, to obtain an acceptable localization 
of the field. It is interesting to note that the effects of control 
by the third– and fourth– order modes are practically 
equivalent under these conditions. 

 

 
 

FIG. 1. The normalized criterion of correction quality η 
as a function of the radius St of the receiving aperture for 

different number of the controllable modes. 1) without 
correction, 2) second–order modes, and 3, 4) third– and 
fourth–order modes, respectively. Path length z0 = 0.5 

and the nonlinearity parameter R = –20. 
 

 
 

FIG. 2. The normalized criterion of correction quality η 
as a function of the radius of the receiving aperture St for 

different number of the modes. 1) without correction, 2) 
second–order modes, and 3, 4) third– and fourth–order 
modes, respectively. Path length z0 = 0.5 and the 

nonlinearity parameter R = –40. 
 

When strongly focused beam propagates along short 
paths, the induced thermal lens has a more complicated spatial 
structure than that in the case considered above. We could 
expect that the relative contribution of the fourth–order mode 
will increase in the case of sharp focusing. 

Calculated data on compensation for wind refraction 
along the path z0 = 0.2 for the nonlinearity parameter are 

shown in Fig. 4. (See notation in Figs. 1 and 2.) It can be 
seen that the control by the second– and third–order modes in  

this case is equally inefficient. The main contribution to the 
field concentration comes from the control by the spherical 
aberration alone. 
 

 
 

FIG. 3. The criterion of focusing Jf within the circle of 

radius St = 2ad as a function of. the nonlinearity 

parameter R. 1) without correction, 2) second– order 
mode, 3, 4) third– and fourth–order modes, respectively, 
and 5) ideal corrector. Path length z0 = 0.5. 

 

 
 

FIG. 4. The normalized criterion of correction quality η 
as a function of the radius of receiving aperture St for 

different number of the controllable modes. 1) without 
correction, 2) second–order modes, and 3, 4) third– and 
fourth–order modes, respectively. Path length z0 = 0.2 

and the nonlinearity parameter R = –100. 
 
In addition to the estimate of the relative contribution 

of different modes to localization of the field at the object, 
it is also of interest to estimate the maximum degree of 
compensation for thermal blooming by the ideal corrector 
depending on the path length and on the nonlinearity 
parameter. Calculations carried out for the wide range of 
variations of the parameters z0 and R demonstrate that the 

main parameter which determines the maximum degree of 
compensation, is the product ζ = ⏐R⏐z0. For example, the 

relative fraction of light power which can be delivered at 
the aperture of radius St = 2ad does not exceed 75% for 

ζ = 10–50 and is about 25% for z = 20, moreover, it 
remains practically independent of the path length z0 for 

ζ = 20. At the same time, the smaller is z0, the higher order 

modes of the beam must be controlled to obtain the above–
indicated degree of compensation. 

Thus the studying of the dependence of the maximum 
criterion of focusing on the number of base modes 
demonstrate that in contrast to the case of long paths and of 
moderate nonlinearity of the medium, when it is sufficient 
to control by tilt, curvature, and astigmatism of the 
wavefront, the relative contribution of the third– and 
fourth–order modes increases for short paths. Moreover, the  
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increase of the dimension of the control basis from 3 to 8 
modes modes result in the increase of concentration of the 
field at the object by 20–30%. The maximum degree of 
compensation for thermal blooming is determined by a 
single parameter ζ = ⏐R⏐z0. 
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