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Propagation of signals from a point isotropic source of incoherent unpolarized 
optical radiation through the atmosphere with a homogeneous cloud layer of large 
optical thickness is modeled. An analytic expression is obtained for the bispectral 
transfer function of such a path. The function is plotted at various observation angles.  

 
1. Propagation of signals from a point isotropic source 

of incoherent unpolarized optical radiation through the 
atmosphere with a homogenous cloud layer of large optical 
thickness (τ > 10) to a detector removed at "infinity" is 
modeled. We will regard the propagation path as a linear 
system, invariant with respect to shifts in time, which may 
be characterized in temporal and frequency domains by its 
impulse response and transfer function, respectively. When 
the transfer function of the path H (ω) is well known, one 
may calculate its bispectral transfer function  
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which is a characteristic of such a system widely used to 
reconstruct signals and images.1-4 Triplet correlation functions 
and bispectra in signal processing are effective means of 
suppressing the additive noise.1 The noise is suppressed to such 
a degree that it becomes possible to extrapolate the spectrum 
of the signal outside the frequency band of the system by the 
method of analytic continuation, expanding the spectrum in a 
series in terms of the prolate spheroidal functions.5,6  

The aim of our study is to find an analytic expression 
for H (ω) and to construct the bispectral transfer function 
of the path on this basis. Our treatment is based on the 
model developed in Ref. 7.  

2. We search for the spatiotemporal distribution of the 
intensity of radiation at the top of the cloud layer  

 

I (x, y, t; ω) = I (x, y; ω) eiωt (2) 
 

when the source generates a signal with the envelope 
exp(i ωt ). If we specify the distribution in the reference 
system affixed to the detector, the input signal of the 
detector, to within the constant k, independent of x and y, 
can be obtained by integrating Eq. (2) over x and y. Then  
 

H (ω) = κ 
⌡⌠
 –∞

 ∞

⌡⌠
I (x, y; ω) dx dy , (3) 

 

where 
 

κ = Ωcosθ/π , (4) 
 

Ω is the aperture angle of the detector, θ is the angle 
between the direction of the detector and the normal to the 
surface of the layer. We assume scattering of radiation by 
the cloud layer to be Lambertian and the detector to be 
removed at the "infinitely" large distance L from the 
scatterer. The first assumption holds at optical depths 
τ > 10, and the second one – for L > h

0
, where h

0
 is the 

height of the cloud layer top above the source (see Fig. 1).  

 
 

FIG. 1. The scheme of observing a nonstationary isotropic 
radiation source through a cloud layer.  

 
In case of an isotropic point source and completely 

absorbing underlying surface the illumination at the cloud 
bottom I

0
(r ′) obeys the distribution  

 

I
0
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0
 2)1/2 ,  

 

r = (x2 + y2)1/2 ,  r′ = r 

h
0
 – Δh

h
0

 , (5) 

 
where Δh is the thickness of the cloud layer.  

The constant C can be found from the condition of 
normalization  
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The source power is taken to be unity in this case.  

The intensity distribution at the top of the cloud 
I (r) = I (r, 0) may be obtained from Eq. (5) by the method 
of angular zones8 with the use of the well–known analytic 
solution of the problem of radiative transfer of 
unidirectional beams9 through a plane–parallel medium. 
Regarding the radiation from the source as a superposition 
of independent unidirectional beams intersecting the cloud 
layer bottom at the angle φ = arccos μ

0
, which depends on 

the coordinate r as  
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and introducing the weighting functions  
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we obtain for the single–scattering albedo ω~
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 = 1  
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where τ
1
 is the optical thickness of the layer, μ

0
 corresponds to 

the cosine of the angle of the beams incident upon the cloud 
layer bottom at the points removed at the distance r from the 
central line OZ (Fig. 1), w (r) = C μ

0
2 is the density of the 

radiant flux propagating from the source in the direction 
(μ

0
, φ). In the asymptotic approximation of large optical 

thicknesses τ
1
 → ∞, Eqs. (8) are reduced to the form  
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where R and C are determined by formulas (5) and (6). 
Formulas (8) and (9) describe, to a satisfactory accuracy, 
the spatial distribution of brightness of the cloud layer I (r) 
(the error does not exceed 10%) rather than the dependence 
of I on μ. This dependence is manifested in the higher order 
approximation alone. Its account affects the factor k 
entering into Eq. (3) without changing the form of the 
function H (ω).  

To make our calculations more convenient, we 
approximate formula (9) by the relation  
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C
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where 
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The constants C and R
0
 are chosen so as to keep unchanged 

the value I (0) and the area under the curve I (r, ϕ).  
To find I (r, ω) we must take into account the time 

delay Δ(r, ω) caused by the geometric path difference 
between the rays passing through different points (r, ϕ) at 
the top of the cloud layer  
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Here c is the velocity of light and L
1
, L

2
, and L are the 

distances A1, 1B, and AB, respectively (see Fig. 1). The  

impulse response of the medium to the unidirectional beams 
should also be taken into account. It is approximated by the 
relation  

 

ψ(t; r, ϕ) = 
t′

T2 e–t′/T
 U (t′) , t′ = t – Δ(r, ϕ) , (13) 

 

where U (t′) is the Heaviside function, T is the constant 
given by formulas10  
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t
1
τ
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t
1
 = Δh / c ,  αp ≈ 2.66 (D /λ)2 , 

 

and D is the effective diameter of cloud particles.  
The error in approximating the calculated data, 

borrowed from Ref. 9, by the function ψ(t; r, ϕ) does not 
exceed 15%.  

The Fourier transform of the function ψ(t; r, ϕ) is 
given by the formula  
 

H
0
(ω; r, ϕ) = 

1

(i ωT + 1)2 e
–i ωΔ(r, ϕ) (15) 

 

and  
 

I (r, ϕ; ω) = I (r) H
0
(ω; r, ϕ) . (16) 

 

In the limiting case of small T, the impulse response of the 
medium to the unidirectional beams tends to ward the Dirac 
delta function δ[t – Δ(r, ϕ)], and the function H

0
(ω; r, ϕ) 

– to ward the exponential dependence exp[– i ωΔ(r, ϕ)].  
3. Based on Eqs. (10), (15), and (16) and the Bessel 

formula 
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Eq. (3) is reduced to the form  
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Substituting the characteristic value  
 

T
~
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t
1
τ
1

4αp cos2θ
 , (18) 

 

corresponding to the shortest ray path length, into Eq. (17) 
for the variable T, and taking the constant outside the 
integral, we obtain:  
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The impulse response of the system with the transfer 
function given by Eq. (17) can be represented by the 
convolution of two functions  

 

f (t) = F–1[H (ω)] = f
1
(t)∗f

2
(t) ,  (20) 
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and I
0
 is the modified zero the order Bessel function of the 

first kind.  
If A (ω) is the modulus and ψ(ω) is the argument of 

the transfer function (19), i.e.,  
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than 
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4. So far we neglected the reflecting properties of the 
underlying surface. The effect of the Lambertian surface 
with albedo B ≠ 0 may be accounted for following the 
technique described in Ref. 7. We then obtain the 
computational relations  
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Here the function H (ω) is represented in terms of its 
modulus and argument in exactly the same way as for B = 0. 

5. Figures 2 and 3 graphically present the results of 
calculations of the bispectral transfer function of the path 
normalized by the value (kη/2)3 at two zenith angles of 0° 
and 60° for the following values of the parameters of clouds 
and underlying surface: h

0
 = 0.7 km, η = 0.2, h

1
 = 1 km, 

B = 0.35, and Δh = 1 km, With the symmetry of bispectra 
associated with their evenness in the arguments ω

1
, ω

2
, and 

ω
1
 + ω

2
, taken into account these graphs are presented for one 

quadrant alone.  

As can be seen from these figures, when the zenith angle 
θ increases from 0 to 60°, the spectra get narrower and closer 
to the zero point in the frequency plane. This result follows 
logically from longer impulse responses at larger θ.  

6. Analyitic relations (1) and (22)–(26) completely 
determine the bispectral transfer function of the propagation 
path of the signals of the above–considered type. They can 
be employed in computer programs designed for recording 
the signals propagated through the atmospheric cloud layers 
and for retrieving their actual shape. They are applicable to 
pulses of optical radiation generated by sources with wide 
directivity pattern.  

Formulas (22)–(26) are model. To obtain them, 
numerous simplifications and assumptions were introduced, 
and within the developed formalism not all of them may be 
estimated comprehensively enough. The proposed analytic 
solutions must be compared with more cumbersome but 
more accurate numerical results based on the direct 
solutions of the corresponding radiative transfer equations.  

 

 

 
 
FIG. 2. Bispectrum of the path at θ = 0°.  
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FIG. 3. Bispectrum of the path at θ = 60°. 
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