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General theorems of electrodynamics state the existence of the direct relations 
between the amplitudes of light scattered by a macroscopic particle at different 
angles. Any essential restrictions are not imposed on the properties of these particles. 
The example of large particles is considered as a specific illustration.  

 
1. INTRODUCTION 

 
In order to outline the problem, let us remind that the 

relationships between scattering at different angles can play 
an important role in many optical diagnostic methods. For 
example, in laser sensing of the atmosphere the relationship 
between scattering in the "forward" and "backward" 
directions (an extinction coefficient and a radar cross 
section) becomes the problem of principle.1 We bear in 
mind the relations of the type 

 

A(r
0
) = ∑

j

 bj(r0, r0j) A(r
0j) + a(r

0
) (1) 

 

where the quantities A(r
0
) are related to the amplitude of 

light scattering in the direction of the unit vector r
0
. The 

sum is taken over the set of scattering angles (with the 
"weight" bj) and a(r

0
) is a certain known function. 

Formulation of the problem on the light scattering by 
a single particle is presented in Section 2. The "theorem of 
existence" of the relations of the type (1) is proved in 
Section 3. Its description in detail which is suitable for the 
analysis of the large (compared with wavelength) crystal 
particles of arbitrary shape is given in Section 4. The 
particular cases of using the exact formulas are discussed in 
Section 5. 

 
2. THE CANONICAL PROBLEM OF 

SCATTERING OF MONOCHROMATIC LIGHT (AT 
THE FREQUENCY ω) BY A SINGLE PARTICLE 
 
Figure 1 shows the quantities used to solve the 

problem formulated in the title. The particle occupies the 
volume V(r′ ∈ V). We search for the field E at the external 
point r and there  

 

E = E
0
 + E(s) . (2) 

 

The field of the source E
0
 is "vacuum"  

 

ΔE
0
 + 

ω2

c2 E0
 = 0 , divE

0
 = 0 , E

0
 = E(0)exp[ ]i 

ω
c  (k

0
r)  (3) 

 

(with the constant value of E(0) in the direction perpendicular 
to the unit vector k

0
 = e

3
 (see Fig. 1), c is the velocity of 

light), and E(s) is interpreted as the scattered wave. The field 

E
~
(r′) exists inside the particle. The tensor of the dielectric 

constant ε
αβ

 is determined by particle material (certainly, ε
αβ

  

is the relative value in accordance with Eq. (3)), the medium 
being external for V is assumed to be vacuum, and the 
dipole moment of unit volume (induction D = E + 4πP) is 
 

P(r′) = ∑
α, β=1

3

 
e
α 

e
αβ

 – δ
αβ

4π  E
β
(r′) . (4) 

 

 
 

FIG. 1. 
 

Figure 1 shows two Cartesian systems of coordinates 
(their origin is chosen somewhere inside V): the system 
without primes (with the unit vectors e

α
) is affixed to 

incident wave (3) and the primed system (with the unit 
vectors e

α
′) is coaxial with the principal axes of the tensor 

ε
αβ

. Here, the spherical system of coordinates is introduced 

at the observation point r. Finally, the last is assumed to be 
located in the far field for a particle: 

 
ω
c r . 1 , r . r′ = ⏐r′⏐ . (5) 

 
3. THE CONSEQUENCE OF SOME GENERAL 
THEOREMS OF ELECTRODYNAMICS 

 
Let us first quote some rather general statements of 

electrodynamics which are referred to as "theorems"  
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exceptionally for the convenience of references to them. As 
a result, we can write relations similar to Eq. (1). 

Theorem 1. The system of Maxwell's differential 
equations is equivalent to the integral equation 

 

E(r) = E
0
(r) + rot rot ⌡⌠

(V)

 dr′G(r⏐r′)P(r′) – 
4π
3  P(r) , (6) 

 
where G(r⏐r′) = exp(i ω/c)⏐r – r′⏐/⏐r – r′⏐ is the Green's 
function of the Helmholtz operator for the entire space.  

In fact, Eq. (6) is presented in many manuals on 
electrodynamics, optics, and theory of scattering (for 
example, see Refs. 2–6). 

The consequences of Theorem 1 are evident. For 

r′ ∈ V, as E → E~, Eqs. (6) and (4) are reduced to the 

integral equation for E~. After solving this equation, the 
formula for E(s)  

 

E(s) = rot rot ⌡⌠
(V)

 dr′G(r⏐r′)P(r′) , (7)  

 

is derived from Eq. (2), since E~ in Eq. (4) will be known.  
Theorem 2. In the far field for a particle 
 

E
θ

(s) = 
ω2

c2  Π
θ
 

exp( )i 
ω
c r

r  ≡ A
θ

(s)(θ, ϕ) 

exp( )i 
ω
c r

r  , 

 

E
ϕ
(s) = 

ω2

c2  Π
ϕ
 

exp( )i 
ω
c r

r  ≡ A
ϕ
(s)(θ, ϕ) 

exp( )i 
ω
c r

r  , (8) 

 

E r
(s) = 0 , Π(r

0
) = 

⌡
⌠

(V)

 dr′exp( )– i 
ω
c r

0
r′ P(r′) . 

 

Here, A
θ

(s) and A
ϕ
(s) are called the amplitudes of the 

scattered field. 
In fact, Eq. (8) is almost the obvious asymptote (5) 

for Eq. (7) (the details are given in Refs. 2, 7, and 8).  
Theorem 3. The general structure of the field E(s) from 

Eq. (2) is 
 

E(s)(r) =

⌡
⎮
⌠

(q
0
r
0
) ≥ 0

 

dq
0

 
∑
λ=1

2
 
e
λ
(q

0
)
 
B

λ
(q

0
) exp[ ]i 

ω
c  (q

0
r)  ;  

 

rot E(s)(r) = i 
ω
c

⌡
⎮
⌠

(q
0
r
0
) ≥ 0

 

dq
0

 
∑
λ=1

2

 
(q

0
×e

λ
(q

0
))

 
× 

 

× B
λ
(q

0
) exp[ ]i 

ω
c (q

0
r
0
)  ; (9) 

 

B
1
(q

0
) = 

i ω
2πc A

θ
(s)(q

0
) , B

2
(q

0
) = 

i ω
2πc A

ϕ
(s)(q

0
) . (10) 

 

The position of the unit vectors q
0
, e

1
(q

0
), and e

2
(q

0
) 

is shown in Fig. 2.  
 

 
 

FIG. 2. 
 

The proofs of Eqs. (9) and (10) were apparently first 
represented in Ref. 9; the derivation in ample detail was 
repeated in Ref. 10. 

The important consequence of Theorems 2 and 3 (see 
Eqs. (8)–(10)) is the fact that at any distance from the 

particle to its boundary E(s) is determined by the same 
amplitudes as in the far field. This is, of course, not more 
than the explicit form of the remarkable result of the theory 
of scattering: the asymptotic solution in the far field for the 
particle can be used to reconstruct the general solution (for 
example, the abstract operator interpretation can be found 
in Ref. 11). On the basis of Eq. (9) it is simply interpreted: 
Eq. (8) follows from Eq. (9) in accordance with asymptote 
(5).  

Theorem 4. The internal field is 
 

E~(r′) = 
1
4π 

c2

ω2 ε
∧–1rot′ 

⌡⎮
⌠ 

dσ{(n(r′′) × E(σ)(r′′))
 
× 

 

× rot′′G
∧

 (r′′⏐r′)+ (n(r′′) × rot′′E(σ)(r′′)) G
∧
(r′′⏐r′) + 

 

+ (n(ε
∧
E(σ))) div′′G

∧
(r′′⏐r′)} . (11) 

 

Here σ is the surface bounding the volume V with the 

external normal n(r′′ ∈ σ) and E(σ) is the field on σ being 

the surface of the interface. The symbol "∧" stands for 

"affinor"; in particular, ε
∧
 is the affinor with the elements 

ε
αβ

, ε
∧

–1 is the inverse affinor.  

The particular solution of the equation for the affinor 

Green's function G
∧
 is principal for the entire space. In case 

of Eq. (11) this equation is 
 

ΔG
∧
(r⏐r′) + 

ω2

c2 ε
∧

 G
∧

 + (ε
∧
 – I

∧
) grad divG

∧
 = – 4πrotI

∧
δ(r – r′) (12) 

(I
∧
 is the unit affinor).  

From the formal point of view the proof of Eq. (11) is 
the application of the affinor version of the Green's theorem 
to the vector field satisfying Maxwell's equations (the 
corresponding technique is presented, for example, in 
Refs. 2 and 6).  

The choice of G
∧
 is not unique and is dictated by the 

purely pragmatic considerations of the possibility to find G
∧
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for the physical situation under study; the form of Eq. (11) 
depends on these considerations too. The term with grad div 
in Eq. (12) contains two parameters: the factor of "optical 
inhomogeneity" (ε

αβ 
– δ

αβ
) and the factor of anisotropy. 

These quantities very often play the role of the "parameters 
of expansion" of physical solutions. Therefore, 

"inconvenient" grad div G
∧
 can be omitted in Eq. (12) 

without worsening the accuracy of approximation. It 
becomes clear that the term grand div amplifies the 
corresponding large parameter in the case of large particles.  

But one circumstance is absolutely general: the 
particular solutions for the entire space must appear, this 
eliminates the search for the general solution of 
homogeneous problem (12) with corresponding boundary 
conditions. The physical meaning of this is well known and 
is as follows: the Huygens–Fresnel principle2,3,6 is realized 
only in such a way.  

Theorem 5. In the case of the analytic continuation for 
ω (ω → z = ω + i ξ), the amplitude of the scattered wave 
(in Eqs. (8) and (10)) is the regular function decreasing 
exponentially as ⏐z⏐ → ∞ in the upper semiplane (ξ > 0). 
Field (9) possesses the same feature.  

The proof repeats, to a considerable degree, the 
analysis of properties of ε

αβ
(z) made in Refs. 12 and 13, 

completed by formulas (6) and (9): the functions of z 

entering into E~ are integer due to the finiteness of V.  
The consequences of Theorem 5 are evident: the 

ordinary dispersion relations between Re and Im of the 
amplitudes of scattering.  

Now, we can go over to the proof of the existence of 
Eq (1). Actually, the direct substitution of Eqs. (4) and 
Eq. (11) into Π in Eq. (8) will express the scattering 

amplitudes in terms of E(σ). Further, the boundary 

conditions of electrodynamics can be used to express E(σ) 

based on Eq. (2), since optics has no problem with 
discontinuous functions on the boundaries, therefore, 

E(σ) = E
0
 + E(s) on σ. In what follows, the same amplitudes 

of scattering are introduced by the formulas (9) and (10) 
into the derived relation. Now we must study the appearing 
integral in order to identify those typical points which 
determine its values.  

The above–considered procedure leads to the integral 
equation for the amplitudes or, if so desired, for E(s) and 
this procedure can replace the "two–stage" procedure 
described by Eqs. (6) and (7). The free term of this 

equation appears from Eq. (3) and its contribution to E~, 
calculated according to Eq. (11), is  
 

c2

ω2 ε
∧

–1 rot′ 
⎩⎪
⎨
⎪⎧
rot′E

0
(r′)

 
+
 

1
4π 

⌡
⌠
(V)

 dr 
ω2

c2 (E0
(r)⋅(ε

∧
 – I

∧
) × 

 

G
∧
(r⏐r′) –)

1
4π ⌡⌠

(V)

 dr 
⎭
⎬
⎫

div
 

(ε
∧
E

0
) × div

 

G
∧
(r⏐r′)  , (13) 

 
where the symbol "×" denotes the direct production. 
 

4. LARGE PARTICLES (l ω/c . 1, l  
IS THE PARTICLE SIZE)  

 
Commenting on Eq. (12) we can add that the 

asymptotic behavior typical of the case under consideration 

allows one to differentiate exp(i ω/c) ⏐r – r′⏐ alone when  

the expressions with the Green's functions are 
differentiated. Then, representing the affinor in the standard 

form G
∧
 = ∑

α

 e
α
′G

α
 we can derive  

 

G
α
 = i 

ω
c  ε

α
 Q

α
⋅ (R

0
× e

α
′) , Q

α
 = 

exp( )i 
ω
c⏐r – r′⏐

⏐r – r′⏐  ,   (14) 

 
where R

0
 is the unit vector of the vector r – r′ and ε

α
 are 

the eigenvalues of the tensor ε
αβ
; Eq. (14) is written in the 

primed system of coordinates shown in Fig. 1. All terms 

with divC
∧
 can be ignored in this approximation either. 

Let us now consider the term Π which arises after 
substituting E(s) from Eq. (2) in the form given by Eq. (9) 
into the chain of transformations described at the end of 
Section 3. The existence of the large parameter (l ω/c) 
opens the excellent possibility for the asymptotic estimate 
of the integrals.  

First, the asymptotic integration over r′ in Eqs. (8) 
and (4) (on account of Eq. (14) and for corresponding 
F(R

0
)) is performed following the procedure invented in 

Refs. 14 and 15 
 

⌡
⌠

(V)

 dr′ exp[ ]– i 
ω
c(r0 – r′)  F(R

0
) 

exp[ ]i 
ω
c ε

α
⏐r′ – r′′⏐

⏐r′ – r′′⏐  g 

 

g 
2πi

(ω/c)
 F(r

0
) exp[ ]– i 

ω
c (r

0
⋅ r′′)  g

α
(r′′, r

0
) ; (15) 

 

g
α
(r′′, ρ

0
) = ⌡⌠

0

∞

 dρν(r′′ + ρρ
0
) exp[ ]i 

ω
cρ( ε

α
 – 1)  =  

 

= – 
1
2i 

c
ω 

1

( ε
α
 – 1)

 . 

 
In Eq. (15) ν(r) is equal to 1 and 0, for r ∈ V and  

r ∈
–

 V. The value of g
α
 is described by the second relation 

when r′′ ∈ σ and the unit vector ρ
0
 is directed "outside of 

the particle"; only such variants are considered in the 
subsequent analysis.  

For the subsequent simplifications formulas (5), (8), 
(9), (11), (14), and (15) yield the expression written in the 
primed system of coordinates 

 

ic
16πω∑

α=1

3

e
α
′
 

ε
α
– 1

ε
α
⌡⌠dσ ⌡⌠

(q
0
r
0
′′) ≥0

dq
0
 exp[ ]– i 

ω
c r

0
r′′+ i 

ω
c q

0
r′′  × 

 

× {(r
0
×(r

0
((n×(q

0
×(q

0
×B)))×r

0
) J

∧
))

α
 – 

 

– (r
0
×(r

0
((n× (q

0
× (q

0
× (q

0
×B)))) K

∧
))

α
} . (16) 

 
The diagonal affinors in the primed system of 

coordinates containing the terms ε
α

ε
α
/( ε

α
 – 1) and  
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ε
α
/( ε

α
 – 1) are denoted by J

∧
 and K

∧
 and (...)

α
 means α 

component of the vector enclosed in the parentheses. 
The large parameter enters into Eq. (16) because 

r′′ ∈ σ. However, the strategy of the asymptotic estimate 
requires a preliminary explanation.  

The point is this the term exp(– i(ω/c)r
0
r′′) cannot be 

ignored when taking ⌡⌠ dq
0
 because ⌡⌠ ds will be performed 

next. But the four–dimensional integral is hardly calculated 
immediately: first, the integration limits are dependent; 
second, r′′ = r′′(θ′′, ϕ′′) and the effect of this function should 
be avoided as long as possible; and, third, the system of 
equations for stationary points will be of the fourth order.  

We find the way out in going over from ⌡⌠ dq
0
 to 

⌡⌠ dq (where q
0
 is the unit vector of q) that will allow us 

to introduce the variable q (ω/c)r
0
 = p

0
. It is technically 

obtained by taking δ(q2 – ω2/c2) and the Heaviside 

function with the argument q
0
r
0
′′ → qr′′ inside ⌡⌠ dq. For 

the new variable p the above procedures are performed in 

the reverse order and ⌡⌠ dq
0
 in Eq. (16) is replaced by  

 

4 ⌡⌠
 dp

0
⏐p

0
r
0
⏐ exp[ ]– 2i 

ω
c(p

0
r
0
)(p

0
r
0
′′)  H(c

0
) , (17) 

 

c
0
 = r

0
 – 2p

0
(p

0
r
0
) ,  

 

where p
0
 is the unit vector of the vector p, c

0
 is the unit 

vector, and (p
0
r
0
) < 0 , –2(p

0
r
0
)(p

0
r
0
′′) + r

0
r
0
′′ ≥ 0 .  

The function H is formed by {...} from Eq. (16) and by 

the factors being before ⌡⌠ ds.  

Now we must estimate the contribution of stationary 
points into expression (17) and to integrate this expression 
over σ (the cycle "A"); the same procedure (the cycle "B") 
should be performed for the "boundary" points having 
preliminary found out their meaning (for this reason they 
are used in the quotation marks). 

Calculations in the cycle "A" are quite standard. As it 
becomes clear, the only stationary point satisfying 
expression (17) is p

0
 = –(r

0
 – r

0
′′)/⏐r

0
 – r

0
′′⏐ and its 

contribution to expression (17) is  
 

– 2πi
r′′(ω/c)

 H(r
0
′′) exp[ ]i 

ω
c (1 – r

0
r
0
′′)  . (18) 

 

Asymptotic integrating of expression (18) over σ can be 
quite simple if the dependence of r′′ on θ′′ and ϕ′′ is ignored in 
searching for the stationary point, then r

0
 is appeared to be 

such a point. Here two obviously encouraging points should be 
noted: omissions of exp from Eq. (18) and r′′ from dσ. The 
point is simply that r′′ depends on the choice of the start of 
the count (Fig. 1) but it is physically regulated by nothing. 
Therefore such an uncertain quantity as r′′ must be omitted in 
the final formulas. But, nevertheless, the same uncertainty 
remained for n at the point at which the direction of r

0
 crosses 

σ. We eliminate this uncertainty (on the basis of the 
asymptote) by means of the "virtual" conversion to the volume 

integral (⌡⌠ (n×b)dσ = ⌡⌠ dr rotb) and, finally, taking the 

limit n → r
0
. The estimate of ⌡⌠ ds is standard, and for 

functions (18) and (16) it is 
 

⌡⌠
 dσf(r

0
′′) exp[ ]i 

ω
c  r′′(1 – r

0
r
0
′′)  g 

2πir′′
(ω/c)

 f(r
0
) . (19) 

 

The termination of the cycle "A" is the reconstruction of 
factors according to expressions (16), (18), and (19), the 
conversion from Π to the amplitudes according to formulas (8) 
and (10), and the calculations of the vectors from 
expression (16) (q

0
 = n = r

0
). In what follows, the spherical 

system of coordinates is used (see Fig. 1) with the designations 
 

e
θ
 = g

1
, e

ϕ
 = g

2
, er = r

0
 = g

3 
;  

 

A
θ
 = A

1
, A

ϕ
 = A

2
, Ar = A

3
 . (20) 

 

Contribution of stationary point (17) to the amplitude 
of scattering is determined by the vector  

 

– 
1
8 N

∧
((g

1
A

1
(r

0
) + g

2
A

2
(r

0
))(J

∧
 + K

∧
) . (21) 

 

The definition of the affinors J
∧
 and K

∧
 are given after 

expression (16), and the affinor N
∧
 being diagonal in the 

primed system of coordinates has the elements (ε
α
 – 1)/ε

α
.  

Rather ample foreword must precede the cycle "B" 
consisting in the estimate of the effect of "boundary" points.  

Though, the reason is quite evident: for large particles 
"forward scattering" (i.e., in the direction of the unit vector 
k

0
, see Eq. (3) and Fig. 1) has rather sharp maximum (the 

examples can be found in Ref. 16), and this maximum should 
be represented in asymptotic estimate (17).  

However, the oscillating functions cannot be ignored in 
any way and we will even assume that they are predominating 
as previously. This assumption is very important since it 
enables us to avoid the calculations of the derivatives of the 
scattering amplitudes with respect to the angles of the unit 
vector r

0
. 

As it becomes clear, the result of this estimate is 
comparable with relation (21) and therefore the impression can 
be formed that any arbitrary point can be introduced 
analogously into the final formula. But we have to recall our 
assumption and the trick proposed below can be used to 
formalize the situation.  

The point of the "amplitude maximum" is claimed as 
"boundary", i.e., the point from which the count of the angle 
is started; by the way, this entirely corresponds to the canons 
of the asymptotic analysis17,18 where the contributions to the 
integral estimate comes from the stationary and boundary 
points. In our case the "physical maximum" amplifies this 
effect (the "upper" or "lower" boundary is unimportant for 
the two–dimensional integrals). Some mathematical details 
and estimates are presented in Appendix I.  

Once more purely tactical argument (though, it is 
absolutely natural) appears during calculations: the third axis 
is exceptional and that sounds as a signal that such a direction 
should be also exceptional physically. Strictly speaking, this is 
reached by the choice of the system of coordinates without 
primes in Fig. 1 (let us recall that it is affixed to field (3) 
incident from outside, and now the "forward" scattering is 
considered).  
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The boundary point is formally determined by the 
equation c

0
 = k

0
, where c

0
 is given by Eq. (17). The solution 

of Eq. (17) is p
0
 = (k

0
 – r

0
)/ 2(1 – k

0
r
0
); k

0
r
0
′′ ≥ 0 and 

r
0
 ≠ k

0
 in the subsequent ⌡⌠ ds since the limit of the above–

written value of p
0
 as r

0
 → k

0
 does not exist.  

The cycle "B" is technically absolutely clear. The 
contribution of the boundary point to expression (17) 
considered as a function of r

0
′′ is concentrated near θ′′ = 0 

(the system of coordinates without primes in Fig. 1); 
beyond this region the function is asymptotically small. 
(That, by the way, makes two procedures, i.e., estimating 
only the stationary points in expression (16) and 

introducing the "boundary" for ⌡⌠ ds and another procedure 

being considered now identical to each other.) When 
θ′′ = 0, the value of this function is  

 

– i π
2r′′(ω/c)

 exp[ ]i 
ω
c r′′(1 – cosθ)  . (22) 

 

The subsequent integration ⌡⌠ ds is also standard, and 

we eliminate n following the previously described 
procedure. The expression appear  

 

2πi (k
0
 – r

0
)

(1 – cosθ)2(ω/c)
 (23) 

 

which must be multiplied by expression (22) after 
eliminating 1/r′′.  

The termination of the cycle "B" is the list of factors 
from expressions (16), (22), and (23) and Eqs. (8) and (10) as 
well as the calculation of vectors {...} from expression (16) 
(after substitutions q

0
 → k

0
 and n → k

0
 – r

0
) where the 

system of notation (20) is used. The term  
 

– 
1
32 

1

(1 – cosθ)2 N
∧

 (L
1
g

1
 + L

2
g

2
) , 

 

where 
 

L = (1 – cosθ) D(K
∧
 – J

∧
) + (r

0
D)(k

0
(K

∧
 – J

∧
) + (r

0
D)(r

0
J
∧
); (24) 

 

D = e
1
A
~

1
(k

0
) + e

2
A
~

2
(k

0
) 

 

will be added to expression (21). Here A
~

1
 and A

~
2
 are the 

projections of A on the unit vectors e
1
 and e

2
 of the 

coordinate system without primes.  
Now we must calculate the contribution of 

expression (13) to Π according to the chain described at the 
end of Section 3. It is possible to estimate the corresponding 
integrals asymptotically, but the result is not suitable for the 
inverse problems. Therefore, there is a sense in the next trick.  

Equation (12) (without grad div) allows one to be 
convinced that in {...} from Eq. (13) rot from the first of 
two terms of the Neumann series of the equation is 

 

ΔE + 
ω2

c2 ε
∧
E = –(ε

∧
 – I

∧
) E 

ω2

c2 . (25) 

 

The trick just consists in the substitution of the solution 
of Eq. (25) instead of expression (13). Asymptotically it is  

constructed according to Ref. 14 (the method proposed in 
Ref. 14 was repeated in Ref. 19 much later) and the final 
contribution to the amplitude is (θ ≠ 0 as previously)  

 

– 
ω2(1 – cosθ)

2πc2  ⌡⌠
(S)

 dx′dy′ exp[ ]– i 
ω
c(x′r

01
 + y′r

02
)  × 

 

× ⌡⌠
–∞

+∞

 dz′E(0)M
∧

 exp[ ]i 
ω
c z′(1 – cosθ)  . (26) 

 

Here r
01

 and r
02

 are the components of r
0
 in the 

coordinate system without primes, E(0) is determined by 
Eq. (3), S is the projection of the particle onto the plane 
perpendicular to k

0
 (x′, y′, z′ are the coordinates of r′ ∈ V 

in the coordinate system without primes), and the affinor M
∧

 
being diagonal in the primed system has the components 

M
α
 = exp(iω/2c)(εα – 1) ⌡⌠

–∞

z′

 ν(z′′)dz′′ with ν(z′) = 1 inside 

V and ν = 0 outside of V. 
 

5. DISCUSSION 
 
In the previous section we demonstrated the conversion 

of the general theorems presented in Section 3 into 
relation (1) suitable for the specific analysis: now the 
amplitude A(r

0
) must be equated to the sum of 

expressions (21), (24), and (26). The physical arguments 
should precede this action and in Section 4 the maximum of 
"forward scattering" is of primary importance. 

The pragmatical sense of the derived relation can be 
interpreted in a quite evident way here. The retrospective 
glance on its derivation convinces that we must not consider 
the calculations of the scattering parameters in terms of 
other parameters in the specific way. It is assumed that 
measurements are available (for example, of the scattering 
matrix) at different angles of scattering. Using them 
together with the relations under discussion we can obtain 
the information about the value described by 
expression (26), and it can be then "inverted" into the 
particle properties.  

The most interesting possibility is to express the radar 
cross section (θ = π in the discussed formulas) in terms of the 
amplitude of the wave scattered forward. The optical theorem 
and dispersive relations following from Theorem 5 can be used 
to express the radar cross section at the frequency ω in terms 
of the integral of the coefficient of extinction over ω.  

Further, the estimates can (and should) be significantly 
improved if it is known a priori, for example, that a particle 
is isotropic or has the "regular" shape (a sphere, a definitely 
oriented ellipsoid or a cylinder, etc). Though any a priori 
information can be used, as it is in the inverse problems, to 
refine many details of the analysis. It becomes possible to 

perform ⌡⌠ ds exactly and to calculate expressions (26) or (13). 

Apparently, for strongly anisotropic particles there is a sense 
to refine Eq. (14) with the help of successive approximations.  

The assumption preceding the estimates of 
expressions (22)–(24) (and it is absolutely true) is too 
arbitrary. There is no specific formal problems with another 
estimate presented in Appendix II; it can be useful especially 
if the particles are not very large. However, certain additional 
difficulties can appear in the inverse problem.  
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Note also that the solution of Eq. (25) (see 
Appendix II) will be the zeroth order approximation of the 
equation for E(s) which was discussed at the end of 
Section 3. It is well–known in the theory of scattering20 
that these results excelently imitate the precise results and 
for this reason, our trick, when we go over to Eq. (25), 
receives the additional support. We hope that already next 
iteration will become comprehensive (Some details are given 
in Appendix III).  

 
APPENDIX I 

 
To explain the trick yielding expression (24), let us 

consider the integral  
 

J = ⌡⌠
a
1

a
2

 dx⌡⌠
b
1

b
2

 dyg(x, y) f(x, y) exp[iλh(x, y)] . (27) 

 

The function g(x, y) varies quite slowly and the 
function f(x, y) has maximum at the "lower boundary" 
(a

1
, b

1
) and represents the modulus of the amplitude of 

scattering (the argument of the complex amplitude can be 
assumed to be included in g). The parameter ⏐λ⏐ . 1 and 
the real function h has no extremum at the lower boundary. 
The following quantities are nonzero: 

 

( )∂h
∂x a

1
b
1

 = σ
1
 , ( )∂h

∂y a
1
b
1

 = σ
2
 . (28) 

 

The calculation of the contribution of the boundary 
(a

1
, b

1
) to Eq. (27) becomes standard after formal 

transformation f(x, y) = exp(lnf(x, y)) = expH(x, y) and then 
 

b
11

 = ⎝
⎛

⎠
⎞∂2H

∂x2
a
1
b
1

 = ⎝
⎛

⎠
⎞1

f 
∂2f

∂x2
a
1
b
1

 ;  

 

b
12

 = ⎝
⎛

⎠
⎞∂2H

∂x∂y a
1
b
1

 = ⎝
⎛

⎠
⎞1

f 
∂2f

∂x∂y a
1
b
1

 ; (29) 

 

b
22

 = ⎝
⎛

⎠
⎞∂2H

∂y2
a
1
b
1

 = ⎝
⎛

⎠
⎞1

f 
∂2f

∂y2
a
1
b
1

 ,  

 

since, according to our assumption, the derivatives 
∂f /∂x = ∂f /∂y = 0 in the interval (a

1
 b

1
). 

After conventional in such cases expanding H and h in 
the Tailor series up to the first nonzero derivatives, 
substituting the variables ξ = x – a

1
 and η = y – b

1
, and 

integrating between the semiinfinite limits, since the 
considered combination (a

1
, b

1
) is boundary, the expression 

appear 
 

g(a
1
, b

1
) f(a

1
, b

1
) exp[i λh(a

1
, b

1
)]⌡⌠

0

∞

dξ ⌡⌠
0

∞

dη  × 

 

× exp(i λσ
1
ξ
 
+

 
i λσ

2
η – )1

2
 (⏐b

11
⏐ξ2

 – 2b
12

ξη +
 
⏐b

22
⏐η2) ,(30) 

 

where the negatively defined quadratic form with 
coefficients (29) has been taken into account.  

The integral, for example, over ξ is 
 

⌡⌠
0

∞

 exp(–βξ2 – γξ)(cosbξ + i sinbξ)dξ = Kc + iKs 

with β > 0 (as has already been noted) and b > 0 (otherwise 
the sign of Ks is reversed) is tabular:  
 

Kc = 1/4 π/β {(1 – Φ((γ – ib)/2 β))exp[(γ – ib)2/4β] + 
 

+ [1 – Φ((γ + ib)/2 β)]exp[(γ + ib)2/4β]} . 
 

The expression for Ks differs from the expression for 

Kc in the "minus" sign between the terms in {...} and in the 

factor i being before {...}; according to the definition,  
 

Φ(z) = 2/ π 
⌡⌠
0

z

exp(–t2)dt
 
 .  

 

If we assume that 
 

⏐b⏐ . β and ⏐b⏐ . ⏐γ⏐ , (31) 
 

then, applying the "large ⏐z⏐′′ asymptote to Φ(ζ), after 
elementary transformations we obtain that Ks = 1/b. The 

quantity Kc g 0 given that condition (31) is valid, and this 

circumstance is quite noteworthy. If the point of maximum 
f were internal, the lower limit in expression (30) would be 
(– ∞), and the evident conversion to the sum of squares in 
the form with coefficients (29) would have yielded Ks = 0 

and double Kc. Given that conditions (31) be valid, the 

contribution of the maximum f would be equal to zero (!?).  
The rest of integral (30) is 
 

⌡⌠
0

∞

exp(–aη2)dt
 
(cosb′η + i sinb′η)dη = Nc + iNs 

 

with a > 0 and b′> 0 (as before). The written integrals are 
tabular 
 

Nc = 1/2 
π
a exp(–b′2/4a); 

 

Ns = 
b′
2a Φ( )1

2, 
3
2; 

b′2

4a  exp(–b′2/4a) . 

 

Let us assume again that 
 

b′2 . a (32) 
 
and once more Nc g 0 (with the previous comment). The 

asymptote of the degenerate hypergeometric function Φ will 
give Ns g 1/b′. This is entirely equivalent to the estimate of Ks.  

Reconstructing the values of b and b′ we can obtain 
the contribution of (a

1
, b

1
) to Eq. (27) 

 

– 
1

λ2 
1

( )∂h
∂x a

1
b
1

 ( )∂h
∂y a

1
b
1

 f(a
1
, b

1
) g(a

1
, b

1
)exp[i λh(a

1
, b

1
)]. 

 
But absolutely the same result can be obtained if Eq. (27) is 
estimated by the conventional asymptotic technique17 
employed for f without extremum, that is, by the integration 
by parts ignoring the upper limit when making substitutions in 
the free term. It is easy to prolong this rule also for more 
complicated variants with zero derivatives ∂h/∂x or ∂h/∂y and 
even with the extremum in h on the boundary.  
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In terms of (28) and (29), conditions (31) and (32) 
claim that at the "boundary" point  

 

⏐ ⏐λ
∂h
∂x . ⏐ ⏐1

f 
∂2f

∂x2  and ⏐ ⏐1
f 

∂2f
∂x ∂y  ,  

 

⏐ ⏐λ
∂h
∂y . ⏐ ⏐1

f 
∂2f

∂y2  and ⏐ ⏐1
f 

∂2f
∂x ∂y  ,  (33) 

 

and they express mathematically the assumption which was 
made before accounting for the physical maximum of the 
"forward scattering". Its mathematical content becomes 
clear: the large values of ⏐λ⏐ must quarantee the validity of 
conditions (33), thereby the maximum of f becomes only the 
"background" for the fast oscillations of exp(i λh).  

 
APPENDIX II 

 
The procedure proposed in Ref. 14 which has already 

been mentioned about can be used to derive the physically 
clear solution of Eq. (25) for the internal field:  

 

E~(r′) = ∑
α=1

3

e
α
′
 
E

α
(0) exp

⎣
⎢
⎡

⎦
⎥
⎤i 

ω
c k

0
r′ + i 

ω
2c ⌡⌠

0

∞

ν(r′ –
 
ρk

0
)dρ . (34) 

 

The primed system of coordinates and the designations from 
Eq. (3) and expression (26) have been used here.  

After substituting Eq. (34) into Eq. (8) and 
introducing ν(r′) into the integral for Π, the vector Π for 
r
0
 = k

0
 will have the components proportional to  

 

ic
2πω ⌡⌠

(S)

 dx′dy′ ⎝
⎛1 – exp[i 

ω
2c (ε

α
 – 1) × 

 

× 
⎠
⎞](z(+)(x′, y′)

 
–

 
z(–)(x′, y′))  (35) 

 

with the designations used in expression (26). (In fact, this is 
Π for r

0
 ≠ k

0
). The functions z(+)(x′, y′) are the solutions of 

the equation, describing the surface σ, for z′ (the coordinates 
along the axis parallel to k

0
).  

Now, we can demonstrate the estimate of derivatives 
appearing in condition (33) using the variable θ as an example 
(see Fig. 1). Here, we refer to that comment to Eq. (34), 
which was given at the end of Section 5.  

Actually, it is necessary to differentiate Π along with 
Eq. (34) twice over θ, then to set θ = 0 ("forward" 
scattering), and to calculate the appearing integrals following 
the previously described procedure (which leads to 
expression (26) and Eq. (34)). Then it becomes clear that  

 

∂2f

∂x2 → 
1
2π ⌡⌠

(S)

dx′dy′ ⎝
⎛z(+)exp[2i 

ω
c(ε

α
– 1) – 

– 
⎠
⎞

⎦
⎤(z(+)

 
–

 
z(–)) – z(–) – 

f(0)
ε
α
 – 1

 + 
i ω
2c  × 

×⌡⌠
(S)

 dx′dy' (x′2 + y′2)
⎝
⎛

⎠
⎞1 – exp[ ]i 

ω
2c(ε

α
– 1)(z(+)

 – z(–)) .(36) 

 

Expression (35) is denoted by f(0). The ratio between 
expressions (36) and (35) should be taken as the estimate of 
Eq. (29).  
 

APPENDIX III  
 

Substituting subsequently Eqs. (4), (11), and (2) into 

Eq. (7) instead of E(σ), we can derive the integral equation 

directly for E(s). We do not write the term with div′′G
∧
 again 

because this approximation has been already commented 
(though, it is absolutely unimportant here). Then  

 

E(s)(r) = E
0
(s)(r) – 

1

16π2 
c2

ω2 rot rot ⌡⌠
(V)

 dr′ G(r⏐r′)(ε
∧
 – I

∧
) ⋅ ε

∧–1 × 

× rot′⌡⌠
 ds {(n(r′′) × E(s)(r′′))rot′′G

∧
(r′′⏐r′) + 

 

+ (n(r′′)×rot′′E(s)(r′′))G
∧
(r′′⏐r′)} . (37) 

 

The free term E
0

(s) is the combination of Eq. (7) and 

(4) into which Eq. (34) is substituted for E
~
. This procedure, 

described at the end of Section 5, quarantes the 
effectiveness of Eq. (37) for the particles whose size varies 
within wide limits.  
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