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Based on the representation of a complex wave field amplitude in the form of 
functional integral, an asymptotic formula is derived and calculations of the relative 
variance of strong intensity fluctuations for light beams propagated in the turbulent 
atmosphere is performed for arbitrary diffraction parameters of the aperture and 
spatial coherence of a source. Relative contribution of terms of an asymptotic series of 
different order to the variance is analyzed by way of varying the parameters of 
diffraction and the initial coherence of the source. It is established that the above–
described effect of exceeding the unity by the level of saturation of the variance for 
strong turbulence on a path, when the structure function of phase on the inner scale of 
turbulence is greater than unity, is found to occur only in the case in which the beam 
is focused with large apertures and does not occur for other conditions of diffraction. 

 

A number of papers is devoted to calculations of the 
intensity fluctuations of narrow optical beams in the 
turbulent atmosphere, in particular, see Refs. 1–6. 
However, the results obtained there either are based on 
approximate calculational methods5,6 or yield the 
asymptotic estimates for the particular focusing and 
Fresnel's parameters of the transmitting aperture. In the 
present paper we study the variance of strong intensity 
fluctuations of optical beams propagated in the turbulent 
atmosphere for arbitrary diffraction parameters of the 
aperture and the coherence of the source.  

For the calculation of the variance of the intensity let 
us make use of the representation of the complex wave field 
amplitude U(x, ρ) in the form of a continuous integral7,8 
 

U(x, ρ) = 
k

2πix ⌡⌠
 

 
 d2

ρ′U
0
(ρ′)exp { }i 

k
2x (ρ– ρ′)2  × 

 

× lim
N→∞

 ( )k
2πix

N–1

⌡
⎮
⌠d2S

1
…d2SN–1 

exp

⎩⎪
⎨
⎪⎧
i 

k
2x ∑

j=1

N–1

 S
2

j + 

 

+ i 
k
2

⌡
⎮
⎮
⌠

x

0

dx′ε
1

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

x′, ( )1 – 
x′

x ρ′ + 
x′

xρ + ∑
j=1

N-1

 νj 

x′

x  Sj

⎭
⎬
⎫

 

 

, (1)  

 
where x is the path length, ρ′ and ρ are the two–dimensional 
vectors in the initial plane and the image plane, respectively, 
which are perpendicular to the direction of beam propagation 
ox′, k = 2π/λ is the wave number, U

0
(ρ) is the initial 

distribution of the field, ε
1
(x′, t′) is the fluctuating component 

of the dielectric constant of a medium, and 

νj(x′/x) = sin(j πx′/x) ( )2N sin(j π/2N) .(see Ref. 8)  

The relative variance of the intensity 
U(x, ρ) = U(x, ρ)U*(x, ρ) on the beam axis  

 

 

σ
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is expressed in terms of the average value 
nI. = nU(x, 0)U*(x, 0). and of the second moment 

nI
2
. = nU(x, 0)U*(x, 0)U(x, 0) U*(x, 0). of the intensity. 

The average intensity is calculated using the well–known 
methods5,6,9 and currently it is not difficult. For the second 
moment in the case of a Gaussian beam using Eq. (1) after a 
number of transformations on the assumptions that the 
integral of the field ε

1
(x′, t) along the path in Eq. (1) is the 

normally random value and the field is locally homogeneous, 
isotropic, and δ–correlated, we derive  
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where Ω = 
ka2

x , g2 = 1 + Ω2( )1– 
x
F

2
, a is the effective beam 

radius, F is the curvature radius of the beam wavefront in the 

initial plane, H(t) = 2⌡⌠d2kΦ
ε
(k)[1– coskt], and Φ

ε
(κ) is the 

spectral density of fluctuations of the dielectric constant of air. 

In the case of radiation focusing ( )x
F = 1  with large 

apertures (Ω → ∞) an equation follows from Eq. (3) which 
coincides with the corresponding representation of nI2

. in 
the phase approximation of the Huygens–Kirchhoff method 
employed for the analysis of this particular case in Ref. 1.  

For the Kolmogorov spectrum of atmospheric 

turbulence9,10 the last exponent in Eq. (3) denoted by A 
can be represented in the form  
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where β
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 is the variance of the intensity 

fluctuations of a plane wave, calculated to the first order of 

the smooth perturbation method. The quantity β
2

0
 can be 

conveniently used as a parameter characterizing the 
turbulent conditions of propagation.9,10 To derive the 

relation for σ
2

I(x, 0) for strong intensity fluctuations when 

the parameter β
2

I is much greater than unity, me use the 

method of asymptotic (as β
2

0
 → ∞) calculation of the 

integrals of type (3).10,5,6,14 In accordance with this 
method, the term A of the integrand in Eq. (3) can be 
represented by a series in the domain important for 
integrating  
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and then it can be integrated over all vector variables 
taking into account the first three terms .  

It should be noted that when analyzing the strong 
intensity fluctuations of collimated narrow optical beams, 
the authors of Refs. 2–4 took into account only the terms 
analogous to the first two terms enclosed in square brackets 
in Eq. (5) when they calculated an asymptotic series, while 
in Refs. 1 and 2 the second term was replaced by the term 
analogous to the third term of Eq. (5) and was dominant in 

the asymptotic representation of σ
2

I for the case of radiation 

focusing with large apertures ( )x
F = 1, Ω → ∞ .  

Substituting Eq. (5) into Eq. (3), we derive after 
integrating over all vector variables  
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2
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(x, y, z, t) is the hypergeometric Gauss function and 

Γ(x) is the gamma function.  
Formula (6) can be used to calculate the relative 

variance of the strong intensity fluctuations for arbitrary 

parameters 
x
F and Ω. In the case of collimated beams 
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FIG. 1. Dependence of the relative variance of the infensity 
of a focused beam (x/F = 1 and Ω = 25) on the parameter 

β
2

0
: 1) calculations neglecting the term σ

2

I,F (σ
2

I = 1 + σ
2

I,c) 
and 2) calculations according to formula (6). 

 

Figure 1 shows the change of the relative contribution 

of the terms σ
2

I,c and σ
2

I,F to the variance of the collimated 

beam as a function of the intensity of atmospheric 

turbulence along the path. It can be seen that for β
12/5

0
 ≤ Ω 

the main contribution to σ
2

I exceeding unity comes from the 

term σ
2

I,F. With increase of β
2

0
, the contribution of σ

2

I,F 

decreases and for β
12/5

0
 > Ω the variance behavior is 

primarily determined by the first two terms of 

expansion (5).  

Figure 2 shows the results of calculation of σ
2

I on the 

axis of the collimated beam as a function of the diffraction 

parameter Ω. Experimental data are also plotted here. It 

follows from the figure that taking into account the 

additional, in comparison with the results of Refs. 3 and 4, 

term σ
2

I,F of higher order enables us to obtain a good 

qualitative agreement with the experimental dependence 

without averaging over the positions of the observation 

point relative to the beam axis.4 Simultaneous account of 

the term σ
2

I,F and averaging over the positions of the 

observation point4 (curve 2) leads to a better agreement 

between theoretical and experimental dependences than in 

the absence of σ
2

I,F (curve 2′).  

 

 
 

FIG. 2. Dependence of σ
2

I(Ω): 1) calculations based on the 

formula (6) for β
0
 = 1.8, 1′) calculations based on the 

formula σ
2

I = 1 + σ
2

I,c (Ref. 4) for the same value of β
0
,  

2 and 2′) calculations with averaging over the positions of 
the observation point. Dashed curve refers to the 
experimental data.  

 
Let us consider in detail the case of the radiation 

focusing with large apertures (Ω . β
12/5

0
) when the term 

σ
2

I,c is negligible. Let us assume, that the turbulent 

distortions of the wave are so great that the parameter 

ρ
c
 ∼ x/k β

6/5

0
 (Ref. 6) becomes smaller than the inner 

scale of the turbulence: ρ
c
 < l

0
. Then the index 5/3 in the 

exponent B in Eqs. (4) and (5) is replaced by 2 and the 
dependence on l

0
 appears.9,11 After integrating as a result 

we derive for σ
2

I the formula11,5,6 
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demonstrating that the saturation level of the variance 
exceeds unity by the value determined by the ratio of the 
inner scale of the turbulence to the aperture radius. For the 
collimated beams when the dominant term of asymptotic 

expansion is the term σ
2

I,c the condition ρ
c
 < l

0
 leads only to 

the substitution of the term β
–1/3

0
 for β

–4/5

0
, and, according 

to this power–law function, the saturation of σ
2

I at unity 

occurs. In Ref. 11 relation (10) was illegitimately expanded 
on the collimated beams on the basis of the calculations in 
the phase approximation of the Huygens–Kirchhoff method 
which was inconsistent with the conclusions of Refs. 3 and 4 
and gave rise to discussions.  
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Measurements of the variance of the intensity of the 
focused beam with the use of the laboratory setup under 
conditions in which the parameter Ds approached very large 

values up to 500 were presented in Ref. 12 . The stable  

saturation of σ
2

I observed in Ref. 12 at the level of  

σ
2

I = 1.06 for 120 < Ds < 500 in some extent can be 

explained by dependence (10).  
 

  

FIG. 3. Calculation of σ
2

I
⎝
⎜
⎛

⎠
⎟
⎞a

2

a
2

c

 (from formula (11): a) collimated beam (x/F = 0 and Ω = 1), b) focused beam (x/F = 1, 

Ω = 25), curves 1, 2, and 3 are calculated taking into account the first, the first two, and all three terms in Eq. (11), 
respectively. 

 
Formula (6) can be generalized for the case of a partially 

coherent radiation when the initial field U
0
(ρ′) is random. Let 

us assume that the time constant of coherence τ
c
 of the source 

is much less than the time constant of the receiver τ
r
. Then the 

fourth moment of the initial field separates in the product of 
the second moments6 with the spatial coherence radius a

c
.6,9 

After the calculations analogous to the foregoing instead of 
Eq. (6) we derive the formula 
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additional parameter and having more complicated form,13,6 
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It follows from Eq. (11) that when the spatial 

coherence of the initial field degrades, the saturation 
level for the relative variance becomes less than unity.13,6 
Figure 3 shows the ralative contributions of three 
components in the relative variance in Eq. (11) as 
functions of the source coherence. Thus, formula (11) 
summarizes separate results given in Refs. 1–4 and 13 and 
can be used to calculate the variance of the strong 
intensity fluctuations for arbitrary parameters of focusing, 
diffraction, and initial spatial coherence of radiation.  
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