
42   Atmos. Oceanic Opt.  /January  1992/  Vol. 5,  No. 1 V.A. Aleshkevich et al. 
 

0235-6880/92/01  42-04  $02.00  © 1992 Institute of Atmospheric Optics 
 

PROPAGATION OF A PROBING BEAM IN A RANDOM REFRACTION 

CHANNEL IN THE ATMOSPHERE 
 

V.A. Aleshkevich, I.E. Daneliya, G.D. Kozhoridze, and M.V. Shamonin 
 

M.V. Lomonosov State University, Moscow 
Received July 29, 1991 

 

An initially coherent probing beam propagating in a randomly inhomogeneous 
channel formed by powerfull heating radiation is theoretically analyzed. The relation 
is derived for the modulus of a spatial correlation function allowing one to trace the 
transformation of a probing beam width and of a correlation radius along the 
propagation path. The effects of asymmetrical defocusing and stochastic 
transformating a probing beam nonuniform in the transverse cross section as functions 
of the initial characteristics of beams and their relative position are analyzed. 

 
INTRODUCTION 

 
Use of the optical methods of probing of the refraction 

channels formed due to absorption of the intense optical 
radiation (IOR) in the atmosphere is of great practical interest 
for optical communication, detection and ranging, 
measurement of the flow velocities, range finding, as well as 
for operation of the systems of adaptive correction of the IOR 
distortions.1-5 Stochastic character of the intense radiation and 
turbulent fluctuations of the refractive index of a medium 
would call for the statistical approach to the description of the 
transformation of the probing beam in the propagation 
channel.1  

Propagation of the narrow partially–coherent beam 
through the medium, whose random inhomogeneities are 
described by the quadratic structural functions, was considered 
in Ref. 1. The structure of the probing beam in the presence of 
distortions of the IOR due to aberrations was investigated 
within the geometric optics approximation in Ref. 2. However, 
in the above–mentioned papers the effect was analyzed solely 
of natural turbulent fluctuations of the refractive index of the 
medium on the beam propagation. 

Note that the scattering of the probing beam on the 
random inhomogeneities of the refractive index induced by 
the intense heating radiation significantly changes the 
pattern of transformation. 

This paper is devoted to the theoretical analysis of 
propagation of the coherent probing beam in a randomly 
inhomogeneous channel formed by an intense heating 
radiation used for clearing up the cloud layers of the 
atmosphere. The scheme with two parallel beams is 
considered. It is shown that the transformation of the 
probing beam degrades its coherence already on the 
propagation paths before entering into clouds and the beam 
axis is displaced from the initial direction. 

 
MATHEMATICAL FORMULATION AND METHOD OF 

SOLUTION 
 
In quasioptical approximation, the propagation of the 

coherent probing beam with initial amplitude 

Ap(x, y, z = 0) = I
0
⋅exp[– (x2 + y2)/2ap

2] along the Z axis 

in the channel of intense multimode heating radiation 
displaced parallel to the probing beam along the X axis at a 
distance l

0
 = (l

0
, 0, 0) with the amplitude 

Ah(x, y, z = 0) = ξ(x – l
0
, y) I

0
 exp[– ((x – l
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)2 + y2)/2ah

2] 
can be described by the equation 
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(1) 
where r = (x, y) is the coordinate transverse to the 
propagation direction (to the Z axis); k

0
 is the wave 

number, ξ(r) is the complex random process with the 
Gaussian correlation function and the correlation radius 
r
0
 < ξ(r) ξ*(r + Δr))> = exp[– (Δr/r

0
)2]. 

Nonlinear deviation of the refractive index nnl from its 

undisturbed value n
0
 is given by the material equation 

describing heat conduction and is determined by the 
intensity of heating radiation, because it is much higher 
than the intensity of the probing beam Ih . Ip: 
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where α, χ, and nt are the coefficients of absorption, 

molecular thermal diffusivity, and thermal nonlinearity, 
respectively (in the atmosphere nt < 0); ρcp is the heat 

capacity per unit volume at constant pressure; the velocity v 
is directed along the X axis, but in general the velocity 
vector lies in the XOY plane (we ignore the longitudinal 
component of the velocity vector along the Z axis, since it 
has no effect on the beam transformation10). 

The system of Eqs. (1)–(2) can be solved by the 
method of a given nonlinear channel,8 which determines the 
distribution of the refractive index nnl over the refraction 

channel by the initial intensity of the heating light field. In 
this approximation we have succeeded in obtaining the 
sought–after solution in the integral form 
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It should be noted that this method is applicable only for 
the paths before entering into the clouds, where the effects 
accompanying the propagation of the intense laser beam 
through the ensembles of aerosol particles7 can still be 
ignored. 
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The regime of thermal blooming depends on the relation 
between the characteristic transite time of the medium 
τ
ν
 = ah/ν and the characteristic time of thermal diffusion 

τ
χ
 = ah

2/χ. The effect of the thermal diffusion on the formation 

of the temperature channel is negligible (τ
ν
 n τ

χ
) in the 

atmosphere under conditions of even not very strong wind 
(ν ∼ 1 m/s), and Eq. (2) can be given in the form 
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In this case the solution is 
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The modulus of the spatial correlation function for the 

probing beam is  
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in which 
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After appropriate calculations Eq. (6) can be reduced to the 
form 

 

⏐Γp(r1, r2, z)⏐ = I(r
1
, z) I(r

2
, z) ⏐γ(r

1
, r

2
, z)⏐ , (8) 

 
where I(r, z) is the average intensity of the probing beam at 
the point (r, z), γ(r

1
, r

2
, z) is the degree of correlation of 

the probing beam,  
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In formulas (9) and (10) the values ax(z) and ay(z) the 

mean radii of the beam along the X and Y axes, rx(z) and 

ry(z) are the correlation radii along the X and Y axes, and 

x(z) is the displacement of the energy axis of the probing 
beam along the X axis.  

 

DISCUSSION OF THE MAIN RESULTS 
 

Disregarding the intermediate calculations analogous to 
that carried out in Refs. 8 and 9, we analize the relations for 
the mean statistical spatial characteristics of the probing beam  
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Here L
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 = k
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2 is the diffraction length of the probing 

beam, Lnl = 
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 is the nonlinear modulation 

length of the heating beam, and N = (ah/r
0
)2 is the initial 

number of spatial inhomogeneities in the heating beam. 
Applicability of the near–axis aberration–free 

approximation used in the derivation of formulas (8)– (9) was 
justified in Ref. 2, where it was shown that for ap/ah ∼ 1 the 

method yields good results on paths of length z < 3 Lnl. 

First of all note that the presence of wind results in 
inhomogeneous distribution of the refractive index over the 
transverse cross section of the beam that gives rise to the 
beam asymmetry (ax < ay) on the initial section of the 

propagation path. However, for large z (∼ 2–3 Lnl), this 

effect proves to be much weaker than the total nonlinear 
and diffraction spreading of the beam and the resulting 
shape of the beam cross section remains practically constant. 
Figure 1 shows the dependences of the beam eccentricity 

ε = I – (ax/ay)
2 on the longitudinal coordinate z for 

different ratios between L
df
 and Lnl and for different initial 

N. It can be seen that with increase of the intensity of 
heating radiation, the beam asymmetry parameter increases 
and the maximum value of ε increases with N.  
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FIG. 1. Dependence of the eccentricity ε of the beam on the 
normalized longitudinal coordinate z/Lnl for N = 1 (solid 

curves) and N = 0.5 (dashed curves): ap/ah = 0.1 and 

l
0
/ap = 0.4 for L

df
/Lnl = 0.1 (1), 0.3 (2), and 0.5 (3). 

 

 
 

FIG. 2. Displacement of the energy axis of the probing 
beam x/l

0
 as a function of the normalized longitudinal 

coordinate z/L
df
 for l

0
/ah = 0.4 and L

df
/Lnl = 0.2 (1), 

0.3 (2), and 0.5 (3). 
 

The displacement of the energy axis of the probing beam 
is independent of the spatial structure of the channel and 
becomes greater when the intensity of heating radiation 
increases. Since both the probing and heating beams are 
displaced in windward direction, the distance between the 
beams can be greater or smaller depending on their position 
relative to the wind direction (in contrast to the case of an 
immobile atmosphere when the beams diverge). The optimum 
scheme is that in which both beams are in the plane of the 
wind velocity, in addition, the probing beam is displaced in 
the windward direction relative to the heating beam. Figure 2 
shows the variation of the distance between the axes of the 
beams as a function of the longitudinal coordinate for this 
case. It can be seen that for  

z = z* = Lnl/{ah/l
0
(1 – exp[– (l

0
/ah)

2])}1/2 this variation is 

equal to l
0
, i.e., the probing beam falls in the center of the 

channel and in such a way the optimum conditions for further 
clearing of the cloud layers are realized. 

Let us analyze also the transformation of the spatial 
structure of the probing beam. The number of spatial 

inhomogeneities Nr = 
ax(z) ay(z)

rx(z) ry(z)
 increases along the path 

at a faster rate for a higher heating radiation intensity 
and larger number of the initial spatial inhomogeneities in 
the heating beam (Fig. 3). 
 

 
 

FIG. 3. Dependence of the number of spatial 
inhomogeneities in the probing beam Nr on the normalized 

longtudinal coordinate z/L
df
 for ap/ah = 0.1, 

L
df
/Lnl = 0.1, and N = 1 (1), 3 (2), and 5 (3). 
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