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A lateral shear interferometer based on a double–exposure recording of a 
hologram of the image produced by a light diffusely scattered by a mat screen and 
passed through a controllable convex lens is analyzed. It is shown theoretically and 
experimentally that spatial filtration in the hologram field enables one to control a 
lens over the field. The spatial filtering in the plane of the image of the mat screen 
makes it possible to record the interference pattern characterizing the phase distortions 
introduced in the reference wave by the aberrations in the optical system forming it. 

 
The technique for producing the lateral shear 

interferograms in the bands of infinite width using a 
diffusely scattered radiation with spatial filtration in 
Refs. 1, 2, and 3 is described as an example of producing a 
doubly exposed hologram of a focused image of a mat 
screen. However, an increase of the focal length of the lens 
used for constructing the real image of the mat screen in the 
plane of a medium in which the hologram is recorded results 
in the increase of the dimensions of the holographic system. 
That, in turn, deteriorates its noiseproof. Partial reduction 
of the required dimensions can be achieved by recording a 
Fourier hologram of the mat screen.4,5  

This paper considers a technique of the double–
exposure recording of the holograms for producing by a 
diffusely scattered light field, of the lateral shear 
interferograms in the bands of infinite width for the quality 
control of the collecting lenses and objectives in a wide 
range of their focal lengths at a relatively small size of the 
holographic system. 

 

 
 

FIG. 1. The optical scheme used for recording and 
reconstructing a doubly exposed hologram: 1) mat screen; 2) 
photographic plate–hologram; 3) reference beam;  
4) recording plane of the interferogram; L

0 
, L

1 
, and L

2
 are 

lenses; p
1
 and p

2
 sre aperture diaphragms;  and, p

0
 is a 

spatial filter. 
 

As shown in Fig. 1, the mat screen 1 is illuminated by 
an aberrationless diverging spherical wave with radius of 
curvature R formed by the lens L

0
 and a point–size opening 

in the opaque screen P
0
 placed at the focus of the lens. 

Then the diffusely scattered radiation passes through the 
controllable lens L

1
 and a recording takes place during the 

first exposure of the photographic plate 2 with the use of 
the quasiplanar reference wave 3. Prior to the second 
exposure, the mat screen is displaced in its plane by an  

amount a along the x axis while the photographic plate is 
displaced in the same direction by an amount b. 

In the Fresnel approximation, neglecting constant 
factors, the complex amplitudes of the objective fields of 
the two exposures in the (x

3
, y

3
) plane of the photographic 

plate can be written in the form 
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where k is the wave number; t(x
1
, y

1
) is the complex 

transmission amplitude of the mat screen, and a random 
function of the coordinates; p

1
(x

2
, y

2
) expiϕ

1
(x

2
, y

2
) is the 

generalized pupil function6 of the controllable lens L
1
 with 

focal length f
1
, which accounts for its axial wave 

aberrations; l
1
 and l

2
 are the distances between the principal 

plane (x
2
, y

2
) of the lens L

1
 and the planes of the mat 

screen and of the photographic plate, respectively. 
If the condition f

1
 > l

1
l
2
/(l

1
 + l

2
) is satisfied, i.e., the 

lens L
1
 forms a virtual image of the mat screen (see Fig. 1) 

and, in addition, R = f
1
 – l

1
, while the shifts of the mat 

screen and of the photographic plate satisfy the condition 
b/a = f

1
/(f

1
 – l

1
), then expressions (1) and (2) can be 

reduced to the form 
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are the Fourier transforms of the corresponding functions. 
Let such a doubly exposed hologram be reconstructed by 

a copy of the reference wave corresponding to the first 
exposure. Then the diffraction field in its plane can be written as 
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where ϕ
2
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3
, y
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) is the deterministic phase function which 

characterizes the phase distortions introduced in the wave 
front of the reference wave by the aberrations of the optical 
system forming it. 

Upon substituting expressions (3) and (4) into 
expression (5), assuming that the equality7 
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is valid, we obtain  
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As follows from expression (6), the identical subjective 
speckles of both exposures with their relative tilt angle 
α = aL/l

1
l
2
 coincide in the hologram plane, therefore the 

low frequency interference pattern produced due to the 
phase distortions of the reference wave is localized in this 
plane.2 If an opaque screen with a circular opening (the 
aperture diaphragm p

2
 of the lens L

2
 in Fig. 1) centered on 

the optical axis is placed in the hologram plane and the 
condition ϕ

2
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) – ϕ
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) ≤ π is satisfied within 

the diameter of the opening, i.e., the diameter of the 
filtering opening does not exceed the width of the 
interference band for the interference pattern localized in 
the hologram plane, then the diffraction field can be 
represented by the expression  
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where p
2
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) is the transmission function of the screen 

with circular opening.8 
The complex amplitude of the field at the distance l

3
 

from the hologram plane can be written, in the approach 
being used as follows: 
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where f
2
 is the focal length of the lens L

2
 (see Fig. 1). 

Upon substituting expression (7) into expression (8), 
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is the Fourier transform of the transmission function of the 
filtering opening. 
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From expression (9) it follows that the image of the 
mat screen limited by the aperture size of the lens L

1
 is 

formed in the (x
4
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) plane if the diameter of the 
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1
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in this case to the dimension of the Fourier transform of the 
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characteristic size of the subjective speckle. In addition, 
within the region of overlap of the images of the pupil of 
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Thus, one can see from expression (10) that the image 
of the mat screen is modulated not only by a random 
speckle structure but also by a low frequency regular 
intereference pattern, which has the form of a lateral shear 
interferogram in the bands of infinite width characterizing 
the axial wave aberrations of the lens L

1
. This can be 

explained by the fact that the information on the phase 
distortions introduced in the light wave by the controllable 
lens, is contained within an individual speckle in the 
hologram plane. Hence it follows that by performing the 
spatial filteration on the optical axis in the plane of the 
hologram, a narrow spatial frequency range can be selected 
from the spatial spectrum of waves scattered by the mat 
screen around the direction of the optical axis. At the same 
time, a shift of the filtering screen along the x axis in the 
hologram plane results in the formation of the lateral shear 
interferogram in the bands of infinite width which in a 
combined way characterises the on–axis and off–axis wave 
aberrations due to the controllable lens L

1
 because in this 

case the filtering opening selects a narrow spatial frequency 
range around the direction corresponding to the spatial 
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is the coordinate of the center of the filtering opening in the 
opaque screen p

2
 (see Fig. 1). 

To record the interference pattern localized in the 
hologram plane let us perform the spatial filtering of a 
diffusely scattered field in the image plane (x

4
, y

4
) of the mat 

screen (see Fig. 2). By substituting expression (6) into 
expression (8), neglecting the diffraction limitations due to the 
finite dimensions of the hologram and the lens L
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, we obtain  
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FIG. 2. The optical scheme used for recording of the 
interference pattern localized in the hologram plane when 
spatial filtering is performed in the image plane of the 
mat screen. 
 

If the opaque screen with a circular opening (the 
aperture diaphragm p

3
 of the lens L

3
 in Fig. 2) centered 

on the optical axis is placed in the (x
4
, y

4
) plane and the 

width of an intereference band of the interference pattern 
localized in the image plane of the mat screen does not 
exceed the diameter of the filtering opening, i.e.,  
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where p
3
(x

4
, y

4
) is the transmission function of the screen 
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 (see Fig. 2) with a circular opening. 
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expression (13) 
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which describes the speckle structure modulated by the 
interference bands. The interference pattern has the form of a 
lateral shear interferogram in the bands of infinite width. It 
characterizes the wave aberrations of the optical system 
forming the wave front of the reference wave. A shift of the 
filtering opening from the optical axis results in a lower 
contrast of the interference pattern as well as in the change of 
its form due to the off–axis wave aberrations produced by the 
controllable lens. 

In accordance with expression (6), there is a common 
quadratic factor in the distributions of the complex amplitude 
of the fields of the two exposures in the hologram plane in the 
minus–first diffraction order. This factor characterizes the 
distribution of the phase of a diverging spherical wave with 
radius of curvature l 

2
2/(l

2
 – L). Therefore, the correcting lens 

L
2
 (see Fig. 2) must be placed in the hologram plane for 

recording the interference pattern localized in it. In the case of 
reconstruction of the hologram in the plus–first diffraction 
order, the real image of the mat screen is formed at the 
distance l 

2
2/(l

2
 – L) from the hologram plane, and the spatial 

fltration on the optical axis in that plane with the help of the 
aperture diaphragm of the collecting lens or objective is 
needed to record the interference pattern localized in the 
hologram plane. 

 

 

FIG. 3. Shear interferograms characterizing the wave 
aberrations of a controllable object with the spatial 
filtration in the hologram plane: a) on the optical axis and 
b) off the optical axis. 

In experiments, the double–exposure holograms were 
recorded on the photographic plates of the type Mikrat–VRL 
using a He–Ne laser at the wavelength 0.63 μm. As an 
example Fig. 3a shows a lateral shear interferogram 
characterizing the spherical aberration in the paraxial focus of 
the objective 300 mm in focal length and the pupil 50 mm in 
diameter. Spatial filtration was performed on the optical axis 
by reconstructing the hologram with a narrow (3 mm in 
diameter) laser beam. The hologram was recorded at 
l
1
 = 85 mm and l

2
 = 200 mm. Diameter of the illuminated 

spot on the mat screen was 60 mm, while the reference beam 
diameter was 50 mm. Prior to the second exposure the mat 
screen was shifted by 1.3 ± 0.002 mm while the photographic 
plate – by 1.349 ± 0.002 mm. The 15 mm shift of the 
hologram with respect to the laser beam reconstructing it in 
the direction of the hologram shift prior to the second 
exposure resulted in the formation of the interference pattern 
in the image plane of the mat screen which is shown in Fig. 3b 
and characterizes in a combinated way the on–axis and off–
axis wave aberrations due to the controllable objective. 

 

 

FIG. 4. Shear interferograms with the spatial filtration in 
the image plane of the mat screen: a) on the optical axis 
and b) off the optical axis. 

 

The lateral shear interferogram in the bands of infinite 
width (see Fig. 4a) characterizes the spherical aberration with 
the prefocal defocusing of the reference wave. This 
interferogram was recorded by reconstructing the hologram in 
the plus–first diffraction order and performing the spatial 
filtration on the optical axis in the plane of the real image of 
the mat screen with the help of the aperture diaphragm (2 mm 
in diameter) of the objective. The 5 mm shift of the aperture 
diaphragm from the optical axis yields the interference pattern 
shown in Fig. 4b. By comparing the interference patterns in 
Fig. 4a and Fig. 4b, one can see that the off–axis spatial 
filtration results in the lower contrast of the interference 
pattern and in the change of its form. This fact can be 
explained by the effect of the off–axis wave aberrations of the 
controllable objective, as has been mentioned above, and must 
be analyzed in ample detail. To this end, in order to simplify 
formulas, let us assume that the controllable lens or objective 
is placed in the plane of the mat screen (i.e., l

1
 = 0), and the 

optical system (see Fig. 2) has a unit magnification. Under 
these assumptions the complex amplitude of the field in the 
recording plane (x

5
, y

5
) takes the form  
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and 
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are the Fourier transforms of the corresponding functions.  
Let us now write down an expression for the 

distribution of light intensity in the recording plane. In 
order to eliminate the speckle effect, let us introduce 
averaging over the coordinates assuming the area of 
averaging to be much larger than the size of an individual 
speckle being at the same time small enough for the phase 
factor exp i[ϕ

2
(– x

5
, – y

5
) – ϕ

2
(– x

5
 + a, – y

5
)] to remain 

constant within it. Then for the average intensity we obtain 
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where Re and Im denote the real and imaginary parts of the 
quantity, and angular brackets denote averaging over the 
coordinates. Assuming average intensities of the 
reconstructed fields corresponding to the first and second 
exposures to be identical, we represent the function 
<I(x

5
, y

5
)> in the form  
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where  
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is the normalized correlation function and ψ = argV. 
The function characterizing only the first order axial 

wave aberrations produced by the controllable lens or 
objective is given by 

 

ϕ
1
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4
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4
)
 
= A(x

4
2 + y

4
2)2 + E(x

4
2 + y

4
2),  

 

where A and E are the coefficients characterizing the 
spherical aberration and defocusing, respectively. In 
addition, we will assume that the interference pattern 
localized in the image plane of the mat screen is produced 
only by defocusing, and the autocorrelation function 

 

<t(– x
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4
) t*(– x

4
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4
′)> = δ(x

4
 – x

4
′) δ(y

4
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where δ is the delta function. Then the formula for the 
correlation function takes the form  
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This formula
 
is analogous to the well–known relation of 

holographic interferometry10 using diffusely scattered fields, 
and determines the normalized autocorrelation function of 
speckle fields in the recording plane (x

5
, y

5
) of the 

interference pattern, i.e., it is a normalized complex 
coefficient of coherence. 

Since the transmission function of the screen with 
circular opening equals unity within the opening and 

vanishes outside it, the quantity ⏐ ⏐p
3
(x

4
, y

4
) 2 = p

3
(x

4
, y

4
) 

and the normalized autocorrelation function takes the form  
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 , 

 

i.e., the autocorrelation function is determined as the 
normalized Fourier transform of the transmission function of 
the screen with circular opening. Then the contrast of the 
interference pattern is ⏐V⏐ = ⏐(2J

1
(kd

3
aE/2)/kd

3
aE/2)⏐, 

where J
1
 is the first order Bessel function of the first kind 

and d
3
 is the diameter of the filtering opening in the plane 

(x
4
, y

4
) in Fig. 2. If the width Δx

4
 = λ/aE of an 

interference band of an interference pattern localized in the 
image plane of the mat screen in the form of equidistant 
bands exceeds, in this simplified case, the diameter of the 
filtering opening, then ⏐V⏐ g 1 and ψ = 0 for the 
interference pattern being recorded in the plane (x

5
, y

5
). 

The same results will be obtained also in the case of 
spherical aberration produced by the controllable lens or 
objective if the width of an interference band in the (x

4
, y

4
) 

plane exceeds the diameter of the filtering opening. 
In accordance with the recommendation given in 

Ref. 11, let us write down, neglecting the distortion which 
is not determined in the differential interferometry, the 
function characterizing the first order off–axis wave 
aberrations produced by the controllable lens or thes 
objective in the form  
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where B, C, and D are the coefficients characterizing the 
coma, curvature of the field, and asigmatism, respectively, 
where ξ = x

3
/λl

2
 and η = y

3
/λl

2
 are the spatial frequencies. 

Hence it follows that the contrast and the form of the 
interference pattern recorded in the (x

5
, y

5
) plane will be 

independent of the off–axis wave aberrations of the 
controllable lens or objective, when the spatial filtering is 
performed on the optical axis in the image plane of the mat 
screen provided the diameter of the filtering opening is 
sufficiently small (x

4
 = y

4
 = 0). A shift of the filtering  
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opening from the optical axis in the plane (x
4
, y

4
) yields 

the following form of the correlation function: 
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where a
0
 and b

0
 are the coordinates of the center of the 

filtering opening. As a consequence, even at a sufficiently 
small diameter of the filtering opening providing the selection 
of the narrow spectral band centered at the spatial frequency 
ρ

0
2 is equal to ξ

1
2 + η

1
2, where ξ

1
 = a

0
/λl

2
 and η

1
 = b

0
/λl

2
, 

⏐V⏐ < 1, and ψ ≠ 0 for the interference pattern recorded in 
the (x

5
, y

5
) plane because of the square law dependence of 

the exponent in the expression for the correlation function 
in the case of off–axis coma aberration. 

Thus, the above–given theoretical and experimental 
results showed that the proposed technique for a double–
exposure recording of the hologram produced by a diffusely 
scattered light field allows one to form the lateral shear 
interferograms in the bands of infinite width. In this case 
the spatial filtering in the plane of the hologram is needed 
for recording of the interference pattern characterizing the 
wave aberrations of the controllable lens or the objective 
localized in the image plane of the mat screen. The  

interference pattern due to the phase distortions of the 
reference wave produced by the aberrations in the optical 
system forming its wave front is localized in the hologram 
plane, and spatial filtration on the optical axis in the image 
plane of the mat screen is needed to record it. It should be 
noted in addition that l

1
 = 0 the technique eliminates 

increasing the frequency of the interference bands due to a 
finite accuracy of the shifts of the mat screen and the 
photographic plate prior to the second exposure using one 
and the same mechanism. 
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