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It is shown that correlation of oncoming waves in the case of double passage of 
radiation through the same inhomogeneities leads to the biased estimate of the angular 
position of the reflector. The approximate analytic relation for this bias is derived. It 
is shown that an enhancement of the backscatter is accompanied with growth of the 
bias of the estimate.  

 
It is well known1-3 that correlation of oncoming waves 

after double passage of radiation through the same 
inhomogeneities located on ranging turbulent path leads to 
the backscattering intensification effects and doubling of the 
variance of the phase fluctuations of the reflected wave. In 
this paper we show that after displacement of the reflector 
from the axis of polar diagram of the source the correlation 
of the oncoming waves causes the bias of the estimate of the 
angular position of the reflector.  

To calculate the complex amplitude of the field we 
make use of the phase approximation of the generalized 
Huygens––Kirchhoff method in which the Green's function 
describing the field of the point–size source is prescribed in 
the form G = G

0
exp(iψ), where ψ is the random run–on of 

the phase having a Gaussian distribution with zero mean 
and G is the unperturbed Green's function determined by 
the Helmholtz equation  

 

ΔG0 = k2G0 = δ(r – ρ) , (1) 
 

where Δ is the Laplacian operator and k is the wave 
number.  

Let us first consider the case in which the radiating 
and receiving apertures are collocated. Let us introduce the 
angular coordinate θ = ρ/z, where ρ is the radius vector in 
the image plane and z is the distance from the plane of the 
receiving aperture to the image plane. Let us express the 
complex amplitude of the field at the radiating aperture in 
the form U(r) = Uexp[iϕ(r)]' where U is the field 
amplitude, ϕ(r) is the random phase distribution with the 
partial spatial coherence of the radiated wave taken into 
account. It is assumed that ϕ(r) has the Gaussian 
distribution of probability with zero mean. In what follows, 
in the approximation of the Fresnel diffraction by virtue of 
the reciprocity theorem for the Green's function,4 the 
distribution of the average intensity in the image plane has 
the form 
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where K
0
 is the coefficient with the properties of the 

reflecting surface taken into account; L is the path length; 
W

r
(⋅) and W(⋅) are the transmission functions of the 

radiating and receiving aperture, respectively; D
ϕ
(⋅) and 

D
ψ
(⋅) are the structure functions of the phase distributions 

ϕ(r) and ψ(r); θ
0
 = ρ

0
/L is the vector of the angular 

coordinates of the reflector; and, ρ
0
 is the vector of the 

transverse shift of the reflector off the axis of the 
directional pattern of the source.  

If within the apertures not more than one spot of the 
coherence is laid, we can use the quadratic dependences 
D

ϕ
(r) = r2/ρ

ϕ

2 and D
ψ
(r) = r2/ρ

ψ

2, where ρ
ϕ
 and ρ

ψ
 are the 

coherence lengths of the field at the radiating aperture and 
of the field propagating through the turbulent atmosphere, 
respectively.  

Integral (2) can be calculated analytically for the 
Gaussian approximation of the transmission functions 

W
r
(r) = exp(– πr2/S

r
) and W(r) = exp(– πr2/S), where 

S
r
 and S are the areas of the radiating and receiving 

apertures. In these approximations the relation for the 
average intensity with collocated apertures has the form  
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where Ω

r
 = kS

r
/2πL and Ω = kS/2πL are the Fresnel 

parameters for the radiating and receiving apertures; 
l = S

r
/π is the number of the coherence spots in the 

distribution of the intensity of the radiated wave; 
m = S

r
/πρ

ψ

2 and n = S/πρ
ψ

2 are the number of the 

coherence spots on the radiating and receiving apertures 
for the wave having passed through the turbulent  
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medium; μ
r
 = k2S

r
θ
0
2/4π and μ = k2Sθ

0
2/4π are the ratios 

of the solid angle corresponding to the transverse shift of 
the reflector to the solid angle of the diffraction divergence 
for the radiating and receiving apertures, respectively; 

Q = exp
⎣
⎡

⎦
⎤– 

4μ
r
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r
2))

 is the multiplier 

characterizing the diminishment of the average intensity of 
the image after the reflector displaced off the axis of the 
directional pattern of the source; and, 

q = 
2m

(1 + 2(l + m + Ω
r
2))

 is the bias of the estimate of the 

angular position of the reflector.  
When the centers of the radiating and receiving 

apertures are separated at the distance d > l
0
, where l

0
 is the 

inner scale of the turbulence, the last term in the exponent 
involved in Eq. (2) comparising the double sum and 
describing the correlation of the oncoming waves vanishes 
and distribution of the average intensity has the form  
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where θ

0
′ = θ

0
 + d/L, i.e., in the process of propagating of 

the radiation through different inhomogeneities, the 
estimate of the angular position of the reflector turns out to 
be unbiased.  

The one–dimensional distributions 
<I(θ/θ0)>/<I′(θ = –θ

0
′)> and <I(θ/θ

0
)>/<I

0
(θ = –θ

0
)> 

(I
0
(θ) is the intensity distribution of the waves 

propagated through the homogeneous medium) for μ = 0.3 
(Fig. 1) and μ

r
 = μ = 1.2 (Fig. 2) are shown in Figs. 1 

and 2, where m = n = 1 for the coherent (l = 0, solid 
line) and partially coherent (l = 1, dashed line) radiated 
fields. It can be seen from the figures that an 
enhancement of the backscatter is accompanied by the 
growth of the bias of the estimate of the angular position 
of the reflector. The equation for the amplification factor 
N has the form  
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It follows from this equation that there is a certain 

threshold value m
r
* such that for μ

r
 > m

r
* the value of N 

starts to increase rapidly, i.e., in the turbulent medium the 
maximum in the average intensity distribution decays slower 
than in the homogeneous medium.  

 

 
 

FIG. 1. 
 

 
 

FIG. 2. 
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