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Based on a comparative analysis of the well–known approaches to solving the –
problem sought–for and studied is an algorithm that possesses the best properties. 

A minimum number of image samplings sufficient for its reconstruction are 
determined. Stability of the algorithm with respect to noise is studied theoretically 
and experimentally. Some results of physical experiments are also given in this paper. 

 
RECONSTRUCTION ALGORITHMS 

 
As was shown in Part II analytical solutions of the 

phase problem are feasible but a narrow class of images and, 
in particular, for those that have a point source in their 
intensity distribution.11  

Among the methods for solving the phase problem there 
are methods of direct solution of the phase problem based on 
numerical solutions of the autocorrelation equation (see Part I, 
Eq. (4)). An algorithm for reconstructing the intensity–
quantized images considered in Ref. 2 is, in fact, reduced to a 
successive looking over all possible solutions with rejection of 
extraneous ones. Using this approach in Ref. 2 they succeeded, 
in reconstruction only true solutions of all, without any 
exceptions, solutions. However, the procedure of seeking for 
all solutions is too complicated and takes a lot of computer 
time. Thus, for instance, the processing of an array of 25×25 
6 bit pixels of an image took about 2.5 hours of BESM–6 
computer time. In Ref. 3 one can find a modification of this 
algorithm for the case of nonquantized images, which also 
takes a lot of computer time. 

Some theoretical algorithms4,5 can be feasible based on 
seeking for z–transform of the autocorrelation 
RQ(z

1
, z

2
) = RJ(z1

, z
2
)RJ( 1 

–1, 
2 
–1), with the following 

calculation of roots RQ with respect to each variable and on 

solution of a system of linear equations for the coefficients 
of the polynomials RJ(z) and RJ(z

–1). The main deficiency 

of these algorithms is difficult and cumbersome factorisation 
of two–dimensional determination polynomials as well as 
significant errors of the root in presence of noise. 

More realistic could be algorithms that are based on 
iteration solution of the autocorrelation equation. The 
principle of operation of these algorithms is as follows. Let 

Jk(n) be the estimate of an image, and Qk(n) be the 
corresponding estimate of the autocorrelation, then the 
discrepancy between this estimate and true autocorrelation can 
be given by 

 

ΔQk(n) = ∑
n

 ⏐Qk(n) – Q(n)⏐2 = ⎜⎜Qk – Q⎜⎜ . 

 

The estimate Jk(n) is then varied so that the value 
ΔQk(n) is reduced to minimum. 

The minimization of ΔQk(n) could be done by different 
methods. Thus in Ref. 6 it was done using the Monte Carlo 
method, while in Refs. 7 and 8 the gradient methods were 
used. The first disadvantage of these algorithms is their  

cumbersome character what limits their applicability only to 
few–dimensional images, and the second disadvantage is 

caused by existence of many extrema in the ΔQk(n) behavior. 
The function ΔQk(n) depends on (N

1
 + 1)(N

2
 + 1) variables 

determined within the image region. 
Such functions have commonly many local extrema in 

addition to the global one. As a result, one can reach a 
global extremum only after looking through all local 
extrema the number of which are unpredictable and are 
determined both by the view of the functional and by the 
image itself. 

One more algorithm of approximate solution of the 
problem9,10 is worth noting here. To perform this 
algorithm one should take a sampling of the module 
values twice as dense as is needed according to 
Kotel'nikov theorem. This can be done by putting the 
autocorrelation into the zeroth data array with the 
dimensions twice as big as the dimensions of the 
autocorrelation and then making an ordinary discrete 
Fourier transform. Then, assuming that the module values 
at each excess point depend only on two values at the 
nearest basic points of sampling one can determine 
differences of phases of the form Δϕk = ⏐ϕk, l – ϕk+1,l⏐, 

Δϕl = ⏐ϕk, l – ϕk,l+1
⏐. Then an estimate of the phase itself 

is constructed by joining Δϕk and Δϕl and making use of 

the circumstance that the final value of the phase is 
independent of the approach ways. 

Despite the indefiniteness of the phase difference sign 
and the need for solution trials, in a two–dimensional case 
only true solutions have been reconstructed (what confirms 
the important role of the closeness condition once more). A 
deficiency of the algorithm is its low accuracy caused by 
rough approximation of the module value. However, this 
algorithm well suits the construction of the initial estimate 
to be used in the iteration technique considered below. 

 
ITERATION ALGORITHMS 

 
1. Optimal algorithm. From the authors' point of 

view the iteration algorithms that are modifications of the 
Gerchberg–Saxton11 algorithm are most promising for 
solving the problem under consideration.  

Briefly, the algorithm operation can be represented by 
the scheme 

 

Jk+1
 = P

∧
1
 P
∧

2
 P
∧

3
 Jk , (1) 
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where Jk is the image estimate at the kth iteration, P
∧

1
 is the 

operator of projection onto the set of positive functions, P
∧

2
 

is the operator of projection onto the set of finite functions 

(defined within the region S), and P
∧

3
 is the operator of 

projection onto the set of functions with a preset absolute 
value of their Fourier spectra. From the definition of the 
projection operator12 one can directly find the form of the 

operators P
∧

1
 and P

∧
2
 

 

P
∧

1
I = {  I(n) at I(n) ≥ 0 ,

0     I(n) < 0 ,  P
∧

2
I = {  I(n) at n ∈ 0 ,

0     n ∉ 0 ,  (2) 

 

where I(n) is an arbitrary real function. Let us now find the 

view of the operator P
∧

3
. Let f(x) = ⏐f(x)⏐ exp{iϕ(x)} be an 

arbitrary Fourier spectrum, and g(x) = A(x) exp{iϕ(x)} be 
the Fourier spectrum with a preset module A(x). Let us now 
find a relationship between ϕ(x) and ψ(x). According to 
definition of the projection operator we have 
 

⎜⎜f – P
∧

3
f⎜⎜2 = ⎜⎜f – g⎜⎜2 = ∑

x

 {⎜f(x)⎜2 + A2(x) – 

– 2⏐f(x)⏐ A(x) cos[ϕ(x) – ψ(x)]} = min . 
 

Minimum of this function is attained at ϕ(x) = ψ(x) 

and ⏐f(x)⏐ = A(x). Therefore the operator P
∧

3
 takes the 

form 
 

P
∧

3
 Jk = J

~
k(x) 

A(x)

⏐J
~
k(x)⏐

 , (3) 

 

where J
~
k(x) = F

∧
{Jk}, F

∧
 is the Fourier transform operator, 

A(x) is the preset module of the Fourier spectrum. 
Since any a priori information (limitations) can be 

interpreted as closed sets, reconstructing algorithm (1) can 
be reduced to a successive projecting onto these sets and 
seeking for a cross element. Normally, analysis of such 
algorithm convergences is based on the statement12 that 
states the convergence to a true solution provided that the 

sets corresponding to operators P
∧

1
 and P

∧
2
 are convex. 

However the set corresponding to operator P
∧

3
 is not convex. 

For this reason it is necessary to study its convergence in 
more detail. A theoretical analysis13 shows that the error 
decreases in the course of the reconstruction that means that 
the algorithm converges. As the experimental studies have 
shown the algorithm converges quite rapidly during 10–30 
iterations and then the convergence sharply decreases and 
by 50–60 iterations it reaches a saturation level which is 
practically the same during the following 2–10 thousand 
iterations and more (see Fig. 1a). 

In other words the estimate of an image becomes 
independent of the iteration number and the standard 
deviation from a true image becomes frozen somewhere at 10–
15 percent. This disadvantage makes us to seek for ways to 
overcome stagnation of algorithm (1) which we shall call 
optimal because the correction of images in it is performed 
with the projection operators, i.e., optimally, in the sense of 
norm. 

2. Shaking algorithm. The below–considered 
algorithms based on the input control have been proposed 
by Fienup,13 and while they are not strictly proved, their 
use allows one to overcome stagnation of algorithm (1). Let 
us now consider the functioning of the nonlinear operator 

P
∧

3
. It is obvious that small perturbations at its input result in 

small perturbations at its output. Since the output is the 
estimate Ik(n) that does not satisfy a priori limitations 

imposed on images. Let us formulate the problem: to give at 
the input at the next iteration cycle, such an estimate Jk+1

(n) 

to obtain at the output the estimate Ik+1
(n) that would satisfy 

the a priori limitations. It is natural to assume that in this 
case the input variation should have the form 
 

ΔJk(n) = 
⎩
⎨
⎧

 

 0 ,     n ∈ Γk ,

– Ik(n) , n ∉ Γk ,  

 
where Γk is the region in which Ik(n) ≥ 0 and n ∈ S. Then 

in the general case we have for Jk+1
(n) 

 

Jk+1
(n) = Jk(n) + βΔJk(n) = 

⎩
⎨
⎧

 

Jk(n) ,       n ∈ Γk ,

Jk(n) –βIk(n) , n ∉ Γk ,
 (4) 

 
where β ∈ (0, 1). One can also try to compensate for a 
distortion in the region of image at the input considering 
the estimate Ik(n) as an input. As a result we have  

 

Jk+1
(n) = Ik(n) + βΔJk(n) = 

⎩
⎨
⎧

 

Ik(n) ,      n ∈ Γk ,

Ik(n) –βIk(n) , n ∉ Γk .
 (5) 

 
A combination of these methods leads to the third 

relation for input 
 

Jk+1
(n) = 

⎩
⎨
⎧

 

Ik(n) ,      n ∈ Γk ,

Jk(n) –βIk(n) , n ∉ Γk .  (6) 

 
Thus, one can see that algorithms (4), (5), and (6) differ 

from optimal only by corrections in the image region. As was 
experimentally shown algorithms (4) and (5) converge even 
more slowly than the optimal one. On the other hand, 
algorithms (6), which we shall call the shaking algorithm, has 
a very interesting behavior. First of all, the estimate of the 
image Jk+1

(n) does not satisfy the a priori limitations. Second, 

the errors first fall off very rapidly with growth of the 
iteration number, but then decrease slows down and after 
100–500 iterations the errors again sharply decrease down to 
0.1–0.01 percent level. And for the third, the convergency of 
this algorithm strongly depends on the value of the constant β. 
For example, at β ≥ 1 the algorithm diverges. An optimal, i.e., 
providing most rapid convergence, value of β from the interval 
(0, 1) depends on a concrete view of the image to be 
reconstructed. 

The main deficiency of the shaking algorithm is its 
general instability, i.e., there can occur an unpredictable 
growth of errors (see Fig. 1b). 

3. A combined algorithm. A natural generalization of the 
above algorithms could be their alternative use aimed both at 
compensation for instability of the shaking algorithm and for 
stagnation of the optimal algorithm. 

 



314   Atmos. Oceanic Opt.  /May  1992/  Vol. 5,  No. 5 P.A. Bakut et al.  
 

 

Let a combined algorithm be given by 

Jk+1
(n) = 

⎩
⎨
⎧

 

Ik(n) ,         n ∈ Γk ,

a{Jk(n) – βIk(n)} , n ∉ Γk .  (7) 

At α = 0 this expression gives the optimal algorithm,  
 

while at α = 1 it represents the shaking algorithm.  
The simplest version of the combined algorithm is  
 

{K
1
 iterations at α = 0 + L

1 iterations at α = 1} × 
 

× M
1
 + K iterations at α = 0 .  (8) 

 
 

 
 

FIG. 1. Dependence of the image reconstruction error on the iteration number when using: a) optimal algorithm,  
b) shaking algorithm, c) alternating the optimal and shaking algorithms each 10 iterations, and d) optimal algorithm after 
80 iterations of the shaking algorithm. 
 

It should be noted that an intermediate version is feasible 
with α ∈ (0, 1). However, the experimental modeling has 
shown such an algorithm has a slower convergence compared 
to that of the combined algorithm (its convergence is 
approximately as that of the optimal one, though the 
stagnation occurs later). 

In order to determine the parameters K
1
, L

1
, M

1
, and β, 

that provide the most rapid convergence of the combined 
algorithm we have studied it experimentally. First we sought 
for an optimal β value (by taking and substituting 3–4 values  

from the interval (0, 1), and then at a fixed β value we 
studied the convergence at different values of K

1
, L

1
, and M

1
. 

Finally, it appeared that the best quality of reconstruction 
occurred with the combination of the parameters K

1
 = L

1
 = 10 

at M
1
 = 1, 2, and 3. 

Behavior of errors during the course of the combined–
algorithm work looks a little bit unusual. Thus, at α = 0 the 
errors decrease, then at α = 1 the errors increase, and the next 
change for optimal algorithm (α = 0) again results in a  
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decrease of errors but now down to a level, which is lower 
than at the previous stage (see Fig. 1c). Thus it is obvious 
that the use of shaking (α = 1) enables one to overcome the 
stagnation of the optimal algorithm. A cyclic alternation of 
these two algorithms can finally result in errors as low as 
10–4 to 10–6. 

Good results can be obtained when using the combined 
algorithm at M

1
 = 1. In this case first 100–150 iterations 

(L
1
) are performed with α = 1, then 20–30 iterations (K

1
) 

are performed with α = 0 (see Fig. 1d). The final errors of 
this algorithm are close to those of the combined algorithm. 

It is interesting to note one peculiar feature. As was 
shown in Part I, the phase problem has a unique solution 
accurate to equivalence, what means that in practice image 
reconstruction yields two images, i.e., an actual one and its 
analog turned about. The algorithm can converge to either 
of the solutions depending on the initial estimate. However 
the shaking (α = 1) can change orientation of an image and 
the reconstruction algorithm starts to converge to the 
opposite solution. Sometimes, though very seldom, a 
situation can happen when two solutions (the true and the 
reversed) overlap. In this case it is impossible to reconstruct 
the image and one simply needs for reiteration of the whole 
cycle of the image reconstruction but using a new initial 
estimate. 

The problem on choosing the initial estimates we have 
studied especially. We took the initial estimates with the 
true module of the spectrum and zero or random phase, the 
estimates uniformly distributed over the S region alone and 
over the whole array, therefore just this type of the initial 
estimate was used in all experiments. 

An image size (S region) was determined at a threshold 
filtration of the autocorrelation at the level 0.1 of its 
maximum value. Thus obtained region of autocorrelation 
exceeded the image region S by a factor of 1.5–1.8. As 
modeling has shown a 10 percent underestimation of S makes 
the algorithm inoperative. On the other hand, at the 
overestimation of S by a factor below 1.5 the algorithm still 
works but the number of iterations increases 5–6 times. It 
should be noted that the use of this algorithm gives the best 
results when applied to reconstruction of compact images 
without a fine structure and dissected contour. Therefore for 
reconstructing more complicated images it is necessary to use 
the abundance of the spectrum module for the image size not 
larger than a quarter of the whole field. 

 
MINIMUM NUMBER OF THE MODULE SAMPLINGS 

AND ANALYSIS OF A RECONSTRUCTION 

ALGORITHM STABILITY TO NOISE 

 
In practice of reconstructing images the spectrum 

module is known at a finite number of sampling points. 
Unambiquity of the image reconstruction in such a situation 
has been analyzed and proved in Ref. 14. As follows from 
this reference an unambiguous reconstruction of an image of 
(N

1
 + 1) (N

2
 + 1) size can be done, in general, if the 

spectrum module is known at (2N
1
 + 1) (2N

2
 + 1) sampling 

points. Since the module of the spectrum of a real image is 
an even function it is sufficient to know only a half of its 
value. Moreover, taking into account the energy 

normalization relation 
⎝
⎛

⎠
⎞

∑
n=0

N

 J(n) = 1  one finds the number 

of samplings sufficient for image reconstruction as 
L = 2N

1
N

2
 + N

1
 + N

2
. However, the general number of 

independent image samplings, with the account of 
normalization, is N

1
N

2
 + N

1
 + N

2
, what gives an idea that  

L number is not minimum. To determine the minimum 
number of the module samplings let us again make use of 
the method of reducing a discrete two–dimensional case to a 
one–dimensional case. 

Let us stretch the image J(n
1
, n

2
) line by line and 

omitting zero lines thus reducing it to a one–dimensional 
image T(n) according to the rule  
 
Tn = In

1
,n

2
 where n = n

1
 + n

2
(N

1
 + 1) .  

 
As a result, corresponding to T(n) the one–dimensional 
autocorrelation Ql is (see Part I) 

 
Ql = Ql

1
,l
2
 + QN

1
–l

1
–1,l

2
+1

 ,  

 

where Ql
1
,l
2
 is the two–dimensional autocorrelation of the 

image J(n
1
, n

2
). Total number of elements of the one–

dimensional autocorrelation Ql is 2(N
1
N

2
 + N

1
 + N

2
) + 1. 

The size of region the one–dimensional image T(n) is 
0 ≤ n ≤ N

1
N

2
 + N

1
 + N

2
, and the size of the one–

dimensional grid, on which the module ⏐F{T}⏐ of the 
spectrum is defined is 2(N

1
N

2
 + N

1
 + N

2
) + 1. Taking this 

as well as the normalizing relation and the fact that the 
spectrum modulus is even into account one finds that the 
minimum number of the modulus samplings sufficient for 
determination of the two–dimensional image J(n

1
, n

2
) is 

L
min

 = N
1
N

2
 + N

1
 + N

2
. In addition, one obtains a 

restriction imposed on the maximum size K of the image 
that could be reconstructed using data on modulus defined 
by an array of the length M. 

Let the image and the array be quadratic and 
N

1
 + 1 = N

2
 + 1 = K, and M be the size of the arrays 

describing the Fourier and image planes. The number of 
independent samplings of the modulus is M2/2 and it should 
involve the minimum number of samplings, i.e., L

min
 ≤ M2/2. 

As a result the maximum size of the image is given by 
 

K
max
2   – 1 ≤ 

M2

2  and K
max

 ≤ 
2
3 M . 

 
But in practice it is advisable to take K from the interval  
M/4–M/2 in order to obtain a faster convergence. 

Let us now consider the stability of algorithms in 
presence of noise. In the one–dimensional case the 
following statement is valid.15 For a one–dimensional, real, 
and symmetric succession is autocorrelation (i.e., it obeys 
Eq. (5) from Part I) it is necessary and sufficient that its 
Fourier spectrum is positive. 

Unfortunately, this statement cannot be generalized on 
the two–dimensional case and, moreover, in the latter case 
quite opposite statement is valid. 

Statement. The Lebesque measure of the subset of the 

autocorrelation {Qn
1
,n

2
} from the set of all real and 

symmetric successions {Bn
1
,n

2

0  } possessing positive Fourier 

spectrum is equal to zero. 
Proof. The set of the real and symmetric successions  

 

Bn
1
,n

2
: {Bn

1
,n

2
 = B

–n
1
,–n

2
 ; – N

1
 ≤ n

1
 ≤ N

1
 , – N

2
 ≤ n

2
 ≤ N

2
} 

 

is defined by the 2N
1
N

2
 + N

1
 + N

2
 + 1 independent 

parameters. Let us now separate out from this set a subset  
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{Bn
1
,n

2

0  } that differs from it only by the values of central 

elements, which we define as follows: 
 

B
0,0
0  ≥ 2 ∑

–N
1

N
1

 
 ∑
–N

2

N
2

 
 ⏐Bn

1
,n

2
⏐ . 

 

In this case the Fourier transform F{Bn
1
,n

2

0   } = f
B0

(x
1
, x

2
) is 

given by 
 

f
B0

(x
1
, x

2
) = B

0,0
0  + 2 ∑

–N
1

N
1

 
 ∑
–N

2

N
2

 
 Bn

1
,n

2
cos(n

1
x

1
 + n

2
x

2
) . 

 

From the construction of Bn
1
,n

2

0   it follows that f
B0

(x
1
, x

2
) ≥ 0 

for arbitrary values of x
1
 and x

2
. The number of independent 

parameters of the set Bn
1
,n

2

0   is 2N
1
N

2
 + N

1
 + N

2
. 

At the same time the number of independent parameters 
of the set of autocorrelations coincide with the number of the 
image parameters (because it must satisfy Eq. (5) from Part I) 
and is equal to (N

1
 + 1) (N

2
 + 1) < 2N

1
N

2
 + N

1
 + N

2
 at 

N
1
, N

2
 > 1. Therefore, according to Statement 1 (Part I) the 

Lebesque measure of the subset autocorrelations from the set 
of all real and symmetric successions with the positive center 
is equal to zero. 

This enables one to draw a qualitative conclusion that 
the two–dimensional autocorrelation (in contrast to the two–
dimensional case) is a very specific succession. Thus, for 
example, an infinitely small noise component will, as a rule, 
transform this succession into another succession which is not 
now the autocorrelation. 

In this sense the two–dimensional phase problem is 
unstable, i.e., a noise makes it impossible to obtain an exact 
solution. 

However, numerous experiments have shown that there 
always exists an approximate solution–image whose 
autocorrelation is very close to a noisy autocorrelation 
succession while it itself is close the true image. 

Just this property (experimental observation) indirectly 
confirms the validity of using the above–chosen iteration 
technique of reconstruction that enables one to obtain an 
approximate solution when the exact one is unvaliable. 

In connection with the above said the question on 
errors of reconstruction arises quite naturally. Using Eq. (5) 
(Part I) one can readily obtain a rough qualitative estimate 
of errors in the image reconstruction at a preset error in 

autocorrelation (or the square modulus) δJ = δQ. 

Thus, in Ref. 16 one can find a theoretical calculations 
of this dependence using Cramerê–Rao inequality, where 
the phase problem was considered as a problem on 
reconstructing a complex Gaussian field from the intensity 
of its spectrum. 

Experimental investigation of the noise characteristics 
of the phase problem used two types of noise: 
 

Multiplicative  
 

A2(x) = A
0
2(x){1 + g⋅n(x)} (9) 

 

and additive  
 

A2(x) = A
0
2(x) + g⋅n(x) , (10) 

 

where A(x) and A
0
(x) are the distorted and undistorted 

amplitudes of spectra, respectively; g is a changeable 
constant, n(x) is the Gaussian process with nonzero mean 
value and unit variance. In the former an error in the 
modulus was introduced as follows: 
 

δ
1
 = 

2 2

0

2

0

( ){ 1 ( ) 1}

( )
x

x

A gn

A

+ −∑

∑

x x

x

, 

 

and in the latter  
 

δ
2
 = 

2

2

0

2

0

( )
( ) 1 1

02( )

( )

x

x

gn
A

A

A

⎧ ⎫⎪ ⎪
+ −⎨ ⎬

⎪ ⎪⎩ ⎭
∑

∑

x

x

x

x

. 

 

Then we studied a normalized rms error over the image 
δ of the reconstructed image from the true one at the 
moment of finishing the reconstruction procedure. In both 
cases the dependence of δ on δ

1
 and δ

2
 is practically the 

same. Thus, at a low noise (10–6 ≤ δ
1
 and δ

2
 ≤ 10–3) δ is 

directly proportional to δ
1
 and δ

2
 (if considered separately). 

At 10–3≤ δ
1
 and δ

2
 ≤ 10–2 we also have proportionality 

between δ and δ
1
 and δ

2
 but the proportionality factors are 

different (δ = 4δ
1
, δ = 3δ

2
). At 10–2≤ δ

1
 and δ

2
 ≤ 0.2 the 

value δ is approximately proportional to square roots of δ
1
 

and δ
2
 (δ = δ

1
, δ = δ

2
). 

 

 
 

FIG. 2.  
 

To study the stability of the problem solution to the 
influence of nonlinear noise of a photosensitive emulsion the 
authors have conducted a very simple physical experiment. 
A plane optical wave formed by collimating a He–Ne–laser 
radiation beam (λ = 0.63 μm) has been transmitted through 
a mask (in the form of figure 4). A collecting lens with  
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F = 500 μm then performed the Fourier transform of the 
transmitted radiation. The intensity of radiation at the 
focus of this lens was then recorded with an ordinary 
camera. With the size l of the mask a resolution element 
of such a system in the Fourier plane is Δ = λF/l. In 
order to reconstruct the autocorrelation the intensity of 
the spectrum should be digitized with the step d, which 
must be twice as small as the resolution element 
(d ≤ λF/2l).  

To digitize the spectrum we used an R–1700 
instrumental complex that provides a 50 μm digitization 
increment. Since l ≤ λF/2l ≈ 3.15 μm the mask size l was 
taken to be 3 mm. 

Thus recorded on a negative film the module of the 
Fourier spectrum (see Fig. 2a) was digitized (its 
intensity) and reduced to an array 64×64 elements. This 
array was then read out to a computer. In the computer 
we then passed from optical densities and intensities using 
a procedure of matching the film contrast to provide most 
sharp boundaries of the autocorrelation. 

The reconstructed autocorrelation and image (after 
30th iteration) are shown in Fig. 2b and c, respectively, 
while Fig. 2d shows the true image recorded with a 
coherent technique and instrumentation. 

 

REFERENCES 
 

1. P.A. Pavlova, V.N. Pauk, and V.V. Teterin, Tr. S.I. Vavilov 
State Optical Institute, Leningrad, 70, No. 204, 55 (1988). 
2. A.A. Demin, Radiotekh. Elektron. 28, No. 10, 2023 (1983). 
3. M.A. Fiddy and H.M. Berenyi, Opt. Comm. 59, 342 (1986). 
4. D. Izraelevits and J.S. Lim, ICCASP 35, 51 (1987). 
5. R.A. Gonsalves, SPIE 528, 20 (1985). 
6. M. Nieto–Vesperinas and J.A. Mendes, Opt. Comm. 59, 
249 (1986). 
7. V.P. Bakalov, Radiotekh. Elektron. 30, No. 8, 1565 (1985).  
8. M. Nieto–Vesperinas, Opt. Acta 33, 713 (1986). 
9. R.H.T. Bates and K.L. Garden, Optik 61, 247 (1982). 
10. R.H.T. Bates and K.L. Garden, ibid, 62, 131 (1982). 
11. R.W. Gerchberg and W.O.Saxton, ibid. 35, 237 (1972). 
12. D.C. Youba and H. Webb, IEEE Trans. Med. Imaging 1, 
81 (1982). 
13. J.R. Fienup, Appl. Opt. 21, No. 15, 2758 (1982). 
14. M.H. Hayes, IEEE Trans. Acoust. Speech. Sign. Proc. 30, 
140 (1982). 
15. P.A. Bakut, A.A. Pakhomov, A.D. Ryakhin, K.N. Sviridov, 
and N.D. Ustinov, Dokl. Akad. Nauk SSSR 290, 89 (1986). 
16. J.N. Cederquist and C.C. Wackerman, J. Opt. Soc. Am. 
4, 1 (1987). 
 

 
 


