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New mathematical models of stochastically nonuniform cloud fields are 
considered taking into account a random geometry of individual clouds. These models 
are constructed on the basis of sum of independent random Gaussian fields with 
decreasing variances and correlation lengths that is essentially close to the so–called 
cascade processes, which are used in simulations of the fractal clouds. The cloud fields 
which are simulated on the basis of Poisson and sum of normal cloud fields are most 
close to actual cloud fields. Within the context of the method of numerical simulation 
of cloud and radiation fields the algorithms of the Monte Carlo method for calculation 
of linear functionals of mean intensity have been developed and the effect of the 
random geometry of individual clouds on the mean fluxes of visible solar radiation 
have been evaluated. 

 
At present the need for taking into account the 

stochastically geometrical structure of cumulus cloudiness 
field have been generally recognized when calculating the 
radiation fluxes and the brightness fields of the 
atmosphere–underlying surface system. In existing 
mathematical models of cumulus clouds individual clouds 
are usually approximated by the simplest geometric bodies 
(such as cylinders, parallelepipeds, truncated paraboloids 
of rotation, and the like), whereas the shape of real 
cumulus clouds is highly irregular and varies over a wide 
range of scales. The geometric objects of such a structure 
are commonly referred to as fractals, while for describing 
them the mathematical apparatus of the theory of measure 
of sets with nonintegral (fractal) Hausdorff 
dimensionality1,2 is employed. Description of some 
methods for simulating the fractal surfaces can be found 
in Ref. 3. 

In Refs. 4 and 5 the n–step cascade processes are 
proposed for simulating a cloud field. It is obvious 
advantage of the cascades that they make it possible to 
construct the clouds of a prescribed fractal dimension 
which for the real cumulus clouds is inferred from 
satellite data.6–9 However, simulation of cascade 
processes is highly laborious and demands very large 
amount of computing resources for numerical construction 
of cloud fields even in relatively small spatial regions, 
that makes it practically impossible to calculate the 
statistical characteristics of radiation field by averaging 
the solution of stochastic transfer equation over an 
ensemble of such fields. 

In this paper some simpler mathematical models of 
cumulus clouds, which are close to the cascade ones and 
take into account the random geometry of individual 
clouds, are proposed to be constructed on the basis of a 
sum of the uniform, isotropic Gaussian fields with 
prescribed correlation functions. Within the scope of the 
method of numerical simulation of cloud and radiation 
fields the effect of random geometry of individual 
cumulus clouds on the mean fluxes of visible solar 
radiation is evaluated.  

 

GAUSSIAN MODEL OF CUMULUS CLOUDINESS 

 
For better understanding we present a brief 

description of a Gaussian model of cumulus cloudiness,9 
based on which we will construct the mathematical 
models taking into account an irregular random geometry 
of individual clouds. 

In this model we assumed that the lower boundary 
of clouds is in the plane z = h

0
, while the upper boundary 

is given by the relation 
 
{(x, y) = h

0
 + max(⏐υ(x, y)⏐ – c, 0) ,  c > 0 , (1) 

 
where v(x, y) is the uniform Gaussian field with zero 
mean, correlation function K(x, y), and variance 
σ2 = K(0, 0). The input parameters of the model (c, σ, 
and correlation function K(x, y)) may be related to the 
experimentally determined quantities, such as cloud 
amount index N and the mean horizontal D and vertical 
H dimensions of clouds.  

It is not difficult to show that the cloud amount 
index is determined from the relation 
 
N = 2(1 – Φ(c/σ)) , (2) 
 
where Φ(x) is the function of standard normal 
distribution. Mean diameter can be determined from the 
relation derived based on formulas (45)–(51) from 
Ref. 10 

 

D = σ 
4 2π N(c/σ)–1 exp(c2/2σ2)

k
20

k
02

 – k
11
2

 , (3) 

 
where  
 

kij = – 
∂K(x, y)

∂xi∂yj

x=y=0

 . 
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Let us assume we know that the function of mean 

height of clouds H
∧

(d) depending on the parameter d from 
an auxiliary model  

 

ω
∧

(x, y) = h
0
 + max(⏐υ

∧

(x, y)⏐ – d, 0)
 
, 

 

where 
∧

υ(x, y) is the uniform Gaussian field having the 
same normalized correlation function, as υ(x, y) but with 
the unit variance. 

Then for the mean cloud height the following 
equality is obvious:  

 

H(c) = σH
∧

(c/σ). (4) 
 

In what follows the cloud fields are assumed to be 
isotropic. This is rational for two reasons: first, 
nonisotropic structures can be easily constructed from 
isotropic analogs by changing the scale along one of the 
coordinate axes, and, second, the algorithm of 

calculations is simplified. In this case in Ref. 11 for H
∧

 
the relation 
 

H
∧

(d) = ⌡⌠
d

∞

 
 (h – d) p(h) dh/⌡⌠

d

∞

 
 p(h) dh , (5) 

 

has been employed in which the probability density of the 
magnitudes of local maxima in accordance with Ref. 12 has 
the from  
 

p(h) = 
3

2π  
⎩
⎨
⎧
exp ⎝

⎛
⎠
⎞– αh2

2α – 3
 h 

3(2α – 3)

α2   + 

 

+ 
3 2π

2α  exp (–h2/2)(h2 – 1)(1 + erf(β)) + 2π × 

 

×
α

3(α – 1)
 

⎭
⎬
⎫

exp ⎝
⎛

⎠
⎞– αh2

2(α – 1)
(1 + erf(γ))  , (6) 

 

β = h 
3

2(2α – 3)
 , γ = h 

α
(2α – 2)(2α – 3)

 ,  

 

erf(x) = 
2

π
 ⌡⌠

0

x

 
 exp( – t2) dt , α = σ2k

40
/k2

20
 . 

 

The problem on numerical construction of the model 
is reduced to simulation of the uniform isotropic Gaussian 
field with a prescribed correlation function, for whose 
approximate simulation the method of randomization of 
spectrum13 has been proposed in Ref. 9 in a modification 
for the case of isotropic fields. The spectral measure of 
isotropic field on a plane is circulary symmetrical, and 
the correlation function has the form 

 

K(x, y) = K(r) = σ2 ⌡⌠
0

∞

  J0
(ρr) μ(dρ) , 

 

where r2 = x2 + y2, J
0
(z) is the Bessel function of the first 

kind with zeroth subscript, μ(dρ) is the radially spectral 
measure on [0, +∞).  

The spectral space is divided into sectors and 
concentric rings, the points of a randomized spectrum lie on  

circles, and the Gaussian field is approximately simulated 
according to the formula  

 

υ(x, y)=
σ
I
∑
J=1

J

 aj∑
i=1

I

  –ln(α
∧

ij)cos ((xρjcosωi+yρj sinωi)+2πβ
∧

ij), 

 (7) 
 

where ρj and ωi are the polar coordinates of the points of 

the spectrum, aj are the coefficients associated with dividing 

the spectral space, and 
∧

αij and 
∧

βij are independently random 

quantities uniformly distributed on [0, 1). 
Let the spectral measure be concentrated on the circle 

with the radius ρ. Then we obtain for the correlation 
function K(r) = σ2J

0
(ρr) and Eq. (7) takes the form  

 

υ(x, y)= 

σ
I
 ∑
i=1

I

 
 – ln(α

∧

i) cos ((xρcosωi +yρsinωi) + 2πβ
∧

i), (8) 

For a given spectral measure k
20

 = σ2ρ2/2,  

k
40

 = –3σ2ρ4/8, α = 1.5 and from Eq. (6) it follows 
 

p(h) = 
2 3
2π  (h2 – 1 + e–h2

) e–h2/2 ,  h ≥ 0 . (9) 

 

When prescribing the input parameters of the model, 
formulas (2)–(5) are used based on Eq. (9) and the 

corresponding values of kij, the value H
∧

(d) is estimated 

numerically. 
For convenience the above–considered model of a 

cloud field will below referred to as the G
1
 model. The 

horizontal and vertical cross sections of individual cloud 
fields constructed on the basis of Gaussian and Poisson14 
models are shown in Figs. 1 and 2. It can be seen from 
the figures that the vertical cross sections of clouds in the 
G

1
 model are well approximated by the vertical cross–

sections of truncated paraboloids. In contrast to the 
Poisson model, in the G

1
 model the spatial structure of a 

cloud field looks less realistic because it is more regular 
(see Figs. 1a and 2a). 

Irregular and odd shapes of real clouds are a product 
of chaotic motions of different scales which occur in the 
atmosphere. The above–considered model provides only 
more or less correct account of the contribution of rather 
large–scale atmospheric motions to the formation of a 
cloud geometry. For this reason the model describes only 
the general profiles of individual clouds and is unable to 
reproduce details of a fine geometric structure. This 
deficiency can be eliminated, if we sum up n independent 
Gaussian fields with decreasing variances and correlation 
lengths (Gn model) that makes it possible to take, to a 

certain degree, into account the effect of atmospheric 
motions of different scales on the geometric shapes of the 
modeled clouds.  

In model (1) let υ(x, y) = ∑
i=1

n

 υi(x, y). Here υi(x, y) are 

independent uniform isotropic Gaussian fields with zero means 
and correlation functions Ki(r) = σJ

0
(ρi r), where 

r = (x2 + y2)1/2, while σi and ρi satisfy the inequalities 
 

⎩
⎨
⎧

 

σi+1
 < σi,

1/ρi+1
 < 1/ρi,

   i = 1, ..., n – 1 . 
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FIG. 1. A random cloud field constructed with the use of the G1 model: 
a) horizontal cross section by the plane z = h0 (region 25 by 25 km) and b) vertical 
cross section (sampling length is 3 km).  

 
FIG. 2. A random cloud field constructed using the Poisson model: a) horizontal 
cross section by the plane z = h0 (region 25 by 25 km) and b) vertical cross section 
(sampling length is 5 km).  
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FIG. 3. A random cloud field constructed with the use of the G2 model (λ = 0.005 
and μ = 0.1), N = 0.5, and D = H = 0.25 km: a) horizontal cross section by the 
plane z = h0 (region 25 by 25 km) and b) vertical cross section (sampling length is 
1 km).  

 
FIG. 4. Vertical cross sections of random images of individual clouds constructed 
using the PGn model. 
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Since the summed fields are independent, for the 
variance and correlation function of the resulting field we 
have the relations  

 

σ
υ

2 = ∑
i=1

n

  σi
2 ; K

υ
(r) = ∑

i=1

n

  σi
2 J

0
(ρi r) . 

 
Note that because of the stability of the Gaussian 
distributions the field υ(x, y) is also Gaussian, and, 
therefore, relations (2)–(6) can be used for adjusting the 
model parameters in accordance with the known values of 
N, D, and H. However, the system is incomplete, and as 
result, only three model parameters can be determined 
unambiguously, such as σ

1
, ρ

1,
 and c, while the remaining 

σ
2
, ... σn and ρ

2
, ... ρn must be assumed to be known 

a priori. For convenience, the latter can be replaced by λ2, 

... λn and μ
2
, ... μn which are assigned a priori and relate to 

the variances and correlation lengths as follows: 
 

⎩
⎨
⎧

 

σi = λiσi,

1/ρi = μi/ρi,

   i = 2, ..., n . (10) 

 
We will refer to the constructed model as a Gn model 

(where subscript n indicates the number of summed 
fields). 

The algorithm of numerical simulation of cloud 
fields in the Gn model is evident, that is, n Gaussian 

fields are simulated independently according to formula 
(8), and then they are summed up. Images of cloudiness, 
constructed by summing up two Gaussian random fields 
are shown in Fig. 3.  

In comparison with the G
1
 model, in this case the 

individual clouds have more irregular shapes, which, 
generally speaking, still essentially differ from the 
geometric shapes of real clouds. 

 
THE POISSON–GAUSSIAN MODEL OF 

CUMULUS CLOUDS 

 
As was already mentioned, in comparison with the 

Poisson random fields, the Gaussian are more regular, but 
they enable one, in principle, to simulate the clouds of 
random geometric shapes. The efficiencies of both models 
can be united if one constructs the cloudiness based on the 
Poisson indicator field (P model) and the Gn model. 

Let υ(x, y) be the sum of n independent Gaussian 
fields with decreasing correlation lengths and variances 
from the Gn model. Together with υ(x, y) we consider the 

Poisson indicator field to be consisting of a set of 
truncated paraboloids of rotation of the fixed diameter D

0
 

and the height H
0
. The cloud centers r

01
,..., r

0m which in 

our case coincide with the geometric centers of bodies, lie 
in the same plane z = h

0
. Recall that a random number m 

of clouds is simulated in accordance with the Poisson 
distribution, while the coordinates of cloud centers are 
uniformly distributed over space. 

Let n(rpj) = (nx(rpj), ny(rpj), and nz(rpj)) is the 

vector of outward normal at the point rpj = (xpj, ypj, zpj) 

to the paraboloid with its center being at the point r
0j, 

where j = 1, ..., m. Let us define a one–to–one 
representation L: rpj = (xpj, ypj, zpj) → rj = (xj, yj, zj) as 

follows: 

 

⎩
⎨
⎧xj = xpj + nx(rpj) ⏐υ(xpj, ypj)⏐

yj = ypj + ny(rpj) ⏐υ(xpj, ypj)⏐

zj = zpj + nz(rpj) ⏐υ(xpj, ypj)⏐
  j = 1, ..., m . 

 
Such a representation, which in fact shows the 

"pulling" of the modulus of the sum of Gaussian fields over 
the paraboloids in the direction of the outward normal, 
transforms smooth paraboloids into some random geometric 
bodies. Bounding these bodies in their bottoms by the plane 
z = h

0
, we obtain the mathematical model of cumulus 

cloudiness, in which individual clouds have a random 
geometry. 

It is obvious that the resulting field is not Gaussian, 
and therefore the mathematical problem on the probabilistic 
properties of such a field remains unresolved. Due to the use 
of the nonlinear procedure L the solution of this problem is 
rather complicated. In particular, it is far from being a 
trivial task to derive the analytical expressions even for 
such relatively simple statistical characteristics as the 
mathematical expectation and correlation function. At the 
first stage of investigations it is useful, first of all, to 
evaluate the effect of stochastic geometry of individual 
clouds on the radiative characteristics of a cloud field. If 
this effect is strong then one should proceed to a more 
detailed physical interpretation and detailed investigation of 
probabilistic properties of the proposed mathematical model 
of broken clouds. 

In this current model which subsequently will be 
referred to as the PGn model, three groups of input 

parameters are used:  
1) The parameters of the P model (without the sum of 

Gaussian fields "pulled", over the paraboloids), that is the 
diameter D

0
 and the height H

0
 of paraboloids, as well as 

the cloud amount index N
0
 (which we will refer to as the 

term "initial" for convenience), giving the mean number ν 
of cloud centers by unit area. 

2) The parameters σ
1
 and ρ

1
, which should be adjusted 

in accordance with the assigned values of D
0
 and H

0
.  

3) The parameters λi, μi i = 2, ..., n which are given 

simply as: λi = 1/2i-1, μi = 1/2i-1. 

Since the number of cloud centers is fixed while their 
mean horizontal dimensions increase when adding the 
modulus of a Gaussian field, the true cloud amount index 
N ≥ N

0
 and is calculated numerically. The mean cloud 

height is given by formula <H> = H
0
 + Hg, where 

Hg = σ
ν
/ 2π is the mean increase of cloud heights due to 

adding the Gaussian field υ(x, y). The quantity <D2> is 
calculated by virtue of the following considerations. The 
mean number ν of cloud centers by unit area is given by 

formula
14

 

 

n = 
4ln (1 – N

0
)

πD
0
2  = 

4ln (1 – N
0
)

π<D
0
2>

 . 

 
Consequently,  
 

<D
0
2> = 

ln (1 – N) D
0
2

 ln (1 – N
0
)  . 

 
The problem of numerically constructing of the PGn 

model is reduced to an independent simulation of two 
random fields. The algorithm of simulation of the uniform  
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isotropic Gaussian field with a given correlation function 
was considered above. The algorithm of simulation of the 
Poisson indicator field can be found in Ref. 14. In Fig. 4 
the images of clouds constructed using the PGn model are 

shown. As can be seen from the figure, the obtained pictures 
are very interesting since these images are too close to the 
realistic cloud images. 

 

 CALCULATION OF THE RADIATIVE 

CHARACTERISTICS OF CUMULUS CLOUDINESS 

 
The mean fluxes (<A> is albedo, <S> and <Qs> are the 

direct and transmitted scattered radiation, respectively) in the 
cumulus cloudiness were calculated for the radiation with the 
wavelength Λ = 0.69 μm. The scattering and absorption in the 
clear atmosphere were neglected. It was assumed that the 
clouds represent the scattering medium with Σ = 30 km-1. The 
photon trajectories were simulated based on the method of 
maximum cross section. The calculations were performed for 
PG

1
 model with the following input parameters: N

0
 = 0.1, 

0.3, and 0.5; D
0
 = 1.0 km; H

0
 = 1.0 km; σ = 0.075 km; and 

ρ = 30 km–1. For given parameters of the model, the cloud 
amount index was taken to be N = 0.13, 0.373, and 0.593, 
and the mean cloud height <H> = 1.06 km and rms horizontal  

cloud size <D2>1/2 = 1.143 km. In order to evaluate the effect 
of random geometry of cumulus clouds on the mean fluxes 
of visible solar radiation, the corresponding radiative 
characteristics for the P model were calculated simultaneously 
at the same cloud amount indicies N, horizontal size 
<D2> 1/2 = 1.143 km and height <H> = 1.06 km for the 
clouds approximated by paraboloids of rotation. Comparative 
calculational results are given in Table I. 

The differences between the mean fluxes of direct <S> 
and scattered <Qs> radiation calculated with the use of the 

P and PG
1 

models reach essential magnitudes (especially in 

the region of intermediate values of solar zenith angles, 
where the differences between corresponding values of the 
probability for the sun to be screened by clouds is 
maximum). This result seems to be important taking into 
account the fact that real underlying surfaces are far from 
being Lambertian and their reflectances depend on the 
angular distribution of solar radiation at the level of such 
surfaces. It might be expected that the use of the PGn 

models with n g 5–6, a random geometric shape of clouds 
would essentially differ from the paraboloids (see Fig. 5) 
and the above–indicated differences would be still more 
pronounced not only for the mean fluxes of transmitted 
radiation but for the mean albedo as well. 

 
 TABLE I. 

 

ξ
�
* N <S> <Gs> <A> 

  P PG
1
 P PG

1
 P PG

1
 

0 0.130 0.879 0.880 0.069 0.075 0.052 0.046 
 0.373 0.633 0.641 0.200 0.204 0.167 0.156 
 0.593 0.411 0.403 0.307 0.304 0.281 0.294 

30 0.130 0.860 0.854 0.077 0.084 0.063 0.062 
 0.373 0.611 0.586 0.208 0.225 0.181 0.189 
 0.593 0.388 0.354 0.302 0.330 0.309 0.316 

60 0.130 0.769 0.684 0.118 0.181 0.113 0.135 
 0.373 0.415 0.281 0.265 0.364 0.320 0.354 
 0.593 0.195 0.086 0.336 0.398 0.469 0.516 

80 0.130 0.482 0.453 0.225 0.257 0.293 0.290 
 0.373 0.085 0.076 0.339 0.335 0.576 0.589 

ξ
�
* is the zenith solar angle. 

 

 
 

FIG. 5. Dependence of the mean fluxes <S>, <A>, and <Qs> on the random geometry of individual clouds at ξ
�
* = 60°, 

Σ = 30 km–1, <H> = 1.06 km, and <D2
>

1/2 = 1.143 km (curve 1 refers to the calculations for a Poisson model, curve 2 
refers to Poisson–Gaussian PG

1
 model). 

 

The results of comparison permit to draw the 
preliminary conclusion that because of the nonlinear 
dependence of the radiation field upon the cloud 
characteristics the random geometric shape of individual 
clouds can have significant effect on the transfer of solar 
radiation through cumulus clouds. 
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