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A model probability density and experimental data on the saturated intensity 
fluctuations are compared. It is shown that experimental data on the saturated wave 
intensity fluctuations are definitely indicative of deviations from the lognormal 
distribution and tend to the K–distribution, which should be considered as an 
asymptotic approximation for the probability density of the saturated intensity 
fluctuations. 

 
Modern theory of optical wave propagation through 

a turbulent atmosphere based on the parabolic 
approximation of the wave equation describes 
incompletely the probability density of the intensity 
fluctuations as a function of conditions even for the free 
propagation.1 It is theoretically shown that one of the 
universal dimensionless parameters determining the 
functional form of the probability density of the intensity 
is the parameter β

0
.  

 
β

0
2 = 1.23 C

n

2
 k7/6 L11/6 , 

 
where C

n

2 is the structure constant of the refractive index 

field, L is the path length, and k = 2π/λ is the wave 
number. 

The theory and experiment give a lognormal 
distribution in the limiting case of the weak fluctuations 
when β

0
 < 1. In the other limiting case (the values of β

0
 

up to 10 were realized, as a rule, on the sufficiently long 
paths) the inference on applicability of the exponential 
distribution was made based on the asymptotic analysis of 
the behavior of the normalized moments of the intensity 

<I 
m> 

 
<I 

m> = m![1 + 0.21β
0  

–4/5m(m – 1)] , β
0
 → ∞ . 

 
In the real atmosphere β

0
 is finite. That is why the 

question on the arising deviations from the exponential 
distribution or on the accuracy of the asymptotic analysis 
itself was not discussed. 

From the physical viewpoint the lognormal 
distribution corresponds to the single–ray propagation of 
radiation from a source to a receiver whereas the 
exponential distribution corresponds to the multiray 
propagation. This was one of the premises for the 
approximation of the distribution density by a 
superposition of the lognormal and Rayleigh 
distributions2 associated with the limiting cases of 
propagation for the arbitrary parameter β

0
. A correct 

comparison of the model data being obtained in this way 
with the experimental results is the subject for separate 
consideration. It should be noted here only that the 
exponential distribution was not experimentally observed 
even for large β

0
 (Ref. 3). 

The probability density of the saturated intensity 
fluctuations is proposed to be described by the K– 

distribution4 in a number of papers. The model and 
experimental data were compared for the normalized 
moments of the intensity without an account of the real 
instrumental and statistical measurement errors except 
Refs. 3 and 5. In the real atmosphere the evaluations of 
the higher–order moments are accompanied by large 
errors.6 Therefore, the agreement between experimental 
data and any distribution on the basis of coincidence of 
the first few moments (up to the fifth moment, as a rule) 
should be considered insufficiently grounded when we are 
interested in such details as a probability of deep fading, 
a position of the distribution mode, etc. 

This paper presents the results of comparison of the 
model probability density with experimental data for the 
saturated intensity fluctuations. 

The experiment was carried out with the help of the 
equipment and technique described in Refs. 5 and 7 in 
detail. A quasiplane wave of the source was formed with 
a lens objective 500 mm in diameter (the effective beam 
radius was α

0
 ∼ 8 cm). The total length of V–shaped path 

with reflection was 2.5 km, and the parameter β
0
 varied 

in the range 10 ≤ β
0
 ≤ 13. The requirements imposed by 

Ref. 6 on the measurement accuracy were taken into 
account in signal recording and data processing. 

Figure 1 shows the typical histogram P(I) of the 
instantaneous values of the intensity I (β

0
 = 11.5 and the 

scintillation index β
0
 = 1.18) and its comparison with the 

model values for the lognormal distribution 
 

P(I) = ( 2πσI)–1 exp[– 1/2σ2(lnI – ξ)2] ; 
 (1) 
σ = ln(1 + β2) ,  ξ = ln<I>/(1 + β2)1/2 , 
 

the K–distribution  

<I>P(I) = 
2

Γ(y)
 y(y+1)/2I(y–1)/2K

y–1
[2(Iy)1/2] ; (2) 

 
y = 2/(β2 – 1) ,  y > 0 , 
 
and the exponential distribution 
 

P(I) = <I>–1exp(– I/<I>) . (3) 
 

The variance of the histogram estimate evaluated 
according to Ref. 8 is indicated by the vertical bar. The bias 
of the histogram estimate in the region of deep fading is 
insignificant and can be neglected.8  
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FIG. 1. A comparison of the histogram of the normalized 

intensity with the lognormal distribution (curve 1), 

exponential distribution (curve 2), and K–distribution 
(curve 3) for β

0
 = 11.5 and β = 1.18 in the range 

0.01 ≤ I/<I> ≤ 15 for a plane wave. 
 

In spite of the fact that the value of β
0
 is considerably 

greater than in the experiment of Ref. 3, the pronounced 
deviation of the histogram from distribution (3) can be seen in 
the regions of spikes I ≈ 10<I> and of deep fading. This 
circumstance was noted previously in Ref. 3 for I> <I> and 
β

0
 = 5. 

It is clear from the results of comparison of the 
histogram with the lognormal and K–distributions that these 
distributions are sufficiently close for I> <I> and the difference 
between them is in the limits of the statistical measurement 
errors. In the region of deep fading the experimental values lie 
within these distributions and are closer to the K–distribution 
in value of the probability. The inference on the applicability 
of the lognormal distribution for the approximation of the 
probability density of the intensity fluctuations for a plane 
wave was drawn in Ref. 3 for the parameter β

0
 = 5. As can be 

seen from our data, this is typical of I > I
m
, where I

m
 is the 

modal value of the lognormal distribution. The inference of 
Ref. 3 on the applicability of the lognormal distribution for 
the entire range of the intensity values was drawn based on an 
analysis of the histogram with the linear scale of abscissa 
while the data were obtained with the help of the equipment 
whose dynamic range was insufficient for such measurements. 
All these resulted in the large bias of the histogram in the 
region of fading. This bias was not evaluated in Ref. 3. 
Really, as could be seen from the plot shown in Ref. 3, only 
the intensities I > I

m
 were studied in detail. 

To demonstrate the importance of this fact, Fig. 2 shows 
the same values as in Fig. 1 but for the narrower dynamic 
range 0.1 ≤ I/<I> ≤ 15. In this case the experimental values 
are fitted well not only by the K– and lognormal distributions 
but also by the Weibull distribution9 

 

P(I) = βb(bI) b–1exp[– (bI) b] ;  
 (4) 
b = Γ(1 + β –1)/<I> . 
 

The moments of distribution (4) practically coincide with 
the moments of the K–distribution.9 
 

 
 

FIG. 2.  A comparison of the histogram of the normalized 
intensity with the lognormal distribution (curve 1),  
K–distribution (curve 2), and Weibull distribution (curve 
3) for β

0
 = 11.5 and β = 1.18 in the range 0.1 ≤ I/<I> ≤ 15 

for a plane wave. 
 

Thus, the experimental data on a plane wave for the 
saturated intensity fluctuations are definitely indicative of 
deviations from the lognormal distribution, moreover, these 
deviations are such that the histograms tend to the  
K–distribution. Apparently, a tendency to the K–distribution 
is asymptotic. It is associated with the fact that formula (2) 
corresponding to the model of the multiray propagation still 
preassumes the independence of the phase fluctuations of the 
partial waves (rays). At the same time, in the turbulent 
atmosphere the fluctuations of the phase difference of the 
optical waves are correlated at distances up to the outer scale 
of turbulence, along which very many rays are present. 
Therefore, the K–distribution should be considered as an 
asymptotic approximation for the probability density of the 
saturated intensity fluctuations. 
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