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The integral matrix nonstationary radiative transfer equation (NRTE) has been 
derived to study a diffuse light field. The properties of its solution are discussed. The 
angular distribution of scattered radiation brightness is analyzed. Recommendations 
for the use of the NRTE in different approximations are presented.  

 
The need to study a diffuse light field (DLF) based on a 

nonstationary radiative transfer equation (NRTE) arises in the 
determination of the spatial and temporal shape distortion and 
dissipation of the signal of a pulsed emitter in the process of 
light beam propagation through the thickness of a turbid 
medium (atmospheric aerosol, fog, clouds, natural water, 
optical glasses, vegetation, etc).  

In the aforementioned natural turbid media the time of 
scattering by individual particles τ (scattering is treated as 
absorption with subsequent re–emission) is much smaller than 
the transit time of light between two successive scattering 
events tσ = (εν)–1 (the lifetime of the photon in the medium), 

i.e., tσ � τ so that scattering can be considered to be 

instantaneous.  
 

TABLE I. 
 

Medium σ, km–1
 Lσ 

, km t
r 
, s r, μm τ, s t

0
, s 

Haze 0.1  10 3⋅10–5 < 1 < 10–13 10–7
 

Light fog 1.0 1.0  10–6
 10  10–12 10–8

 

Dense 
cloud 

 
50 

 
0.02 

 
 10–7

 

 
10 

 
 10–12

 
10–9

 

Sea water 40 0.025  10–7
 10  10–12 10–9

 

 

Note: Lσ is the mean free path of photon (for scattering), r 

is the radius of scattering particles, t
0
 is the pulse duration 

in the medium treated as the instantaneous pulse. 
 

By way of example Table I is borrowed from Ref. 1 in 
which the relation between τ and tσ for some typical turbid 

media is given.  
It is interesting to note that formulation of the 

nonstationary problem adds the new variable t which, in its 
turn, imposes an additional constraint: the time of averaging 
must be substantially greater than the coherence time for an 
interference pattern formed due to multiple scattering of 
radiation in the thickness of the medium. For most 
representative turbid media this time is greater than 10–9 s 
(see Ref. 1). For this reason the propagation of pulses shorter 
than 1 ns cannot be described by the NRTE.  

The matrix radiative transfer equation expresses the local 
energy conservation law for the parameter of the Stokes vector 
Si and in a nonstationary case has the form2  
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where M(ϕ) is the clockwise rotational matrix of a reference 
plane, and the corresponding angles of rotation of the 

scattering plane l
∧
×l
∧
′ counted off from the planes of 
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∧
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∧
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∧
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∧
 of radiation are  
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and the source function is  
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∧
i; r; l

∧
; t) = Φkν

–1Q ik
–2(r)δ(q

∧
 – l

∧
)δ(r)δ(t) 

 

(below, for simplicity, we set Φk =
df

 1). 

In the case of isotropy of local inhomogeneities (this is 
exactly the case of most natural media) the matrix Qik 

(r) 

degenerates into the scalar quantity Qik = εδik (here ε is the 

coefficient of radiation extinction in the medium and δik is 
Kronecker's delta symbol). In this case Bouguer's term and 
the source function of the NRTE are simplified, i.e.,  
 

Qik(r)[Sk(q
∧
; r; l

∧
; t) – S0

k(⋅)] = ε[Si(⋅) – Si
0(⋅)] . (2) 

 

In an elementary scattering event a photon is for some 
time in the absorbed state. The law of decay (or re–emission) 
of this radiation depends on specific physical conditions. In a 
number of the most important situations (in such media as 
atmospheric aerosol and natural water) the probability of re–
emission is3  
 

exp { } – 
t – t′

τ  
dt
τ  , 

 
hence, the matrix of the local transformation of a wave 
train in the medium is reduced to the form 
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Let us use the following designations for the 
dimensionless time:  

 

u = 
t

tσ + τ , β1
 = 

ε
tσ + τ , β2

 = 
tσ

tσ + τ ,  

 

which are substantially simplified for tσ � τ  
 
u = ενt, β

1
 → 0, β

2
 → 1 . (4) 

 

After introduction of the variables u and r = R – ll
∧
 

and simple transformations on account of Eqs. (2)–(4), the 
NRTF changes in the following way: 
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Here the function of the sources, when using the properties 
of the δ–function, has the from  
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The Fourier transform of a kinetic term assumes the form 
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Let us make use of this Fourier transform 
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and write down the NRTE for the Fourier transforms of the 
goal function  
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where –ε = ε(1 + iw) and 
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with corresponding boundary conditions  
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Let a natural system of coordinates centered at the 
point R and a basis unit vector oriented in the direction 

opposite to the unit vector l
∧
 be taken as a basis. By 

multiplying Eq. (7) by exp(–εl) we obtain  
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By solving Eq. (9) as an ordinary linear differential 
equation on account of boundary conditions (8) and 
properties of the δ–function, we derive the equality  
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Recall the properties of the δ–function in the Fourier 
transform 
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Let us take the inverse Fourier transform of Eq. (10) 
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As a result, we obtain the sought–after representation 
of the matrix NRTE in the integral form  
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or in the operator form  
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which is the Fredholm equation of the second kind with the 
domain of integration being the n–dimensional Euclidean 
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The physical meaning of Eq. (12) is apparent: it 
describes the resultant effect of multiple scattering of 
radiation in the form of the local radiant energy 
conservation law.  

Let us now discuss the properties of its solution based 
on the most general considerations. The time u in 
dimensionless units (of an optical path) is employed as one 
of the variables of the goal function. It is natural that for 
u < εR the Stokes parameter Si(u < εR) = 0. It follows from 

random trajectories of photons (particles of photon gas) that 
the photon displacement is proportional to the square root 
of the travelled distance.5 Hence, to reach the point R the 
photon must travel the distance u = (1 – g)(εR)2, where 

g = cosγ  is the mean cosine of the scattering phase 

function. Thus, when u = εR we record only direct and 
singly scattered radiations at the calculated point of the 
field R while at the point u = (1 – g)(εR)2 the goal  
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function attains its maximum value. It is natural that for 

u � εR the Stokes parameter Si(u � εR) → 0.  

We dwell on the analysis of the angular distribution of 
the brightness of scattered light. The brightness field (the 
first Stokes parameter L ≡ Si) has two asymptotes. At the 

initial instants of time u the singly scattered radiation 
arrives predominantly at the point R and, hence, the 
brightness field is determined by the scattering phase 
function of an elementary radiation scattering event x(γ). 
After a long time u the structure of the brightness field is 
no longer dependent on x(γ) and boundary and initial 
conditions, i.e., at large optical depth the brightness field 
becomes quasi–isotropic (this is the specific feature of the 
depth behavior of light).  

As is well known, the solution of the equation in the 
form of formula (12) is the Neumann series  

 

Si = ∑
n=0

∞
  K

–nSi
0 , (13) 

 

which, in many applications of radiative transfer theory, 
can be represented in the approximate form using the 
small–angle modification of the iteration method  
 

Si(n)
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m=0

n-1

  K
–mSi

0 + K
–nS i
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where S i 
sas is the Stokes parameter determined in the 

approximation of small–angle scattering of radiation.  
The solution of Eq. (14) has a clear physical meaning: 

the resultant sum correctly takes into account the terms 
associated with the source radiation which undergoes from 0 
to m scattering events while the remaining terms are taken 
into account approximately through a single effective 
scattering event with a brightness field being quasi–similar 
to the brightness field of the mth multiplicity of scattering.  

This model is the direct generalization of the principles 
of depth behavior of light and remains independent of the 
boundary conditions. However, the correct account of the first 
nth multiplicities of scattering enables one to employ it from 
the initial instants of time and from the distance R = 0.  

It is interesting to note that the speed of convergence 
of Eq. (14) is higher than that of Eq. (13), since the total 
contribution of multiple anisotropic scattering is in fact 
taken into consideration by the single term of series (14) 
rather than by an infinite sum of series (13) in which every  

subsequent term increases the multiplicity of the integral by 
three units. In this connection it may be possible to estimate 
the accuracy of Si(n)

 from the difference between two 

subsequent iterations, i.e., as Si(n + 1)
 – Si(n)

.  

The efficiency of application of Eq. (14) obviously 
depends on the geometry of the problem and successful, 
from the physical point of view, choice of S i 

sas. The most 

natural media are characterized by true absorption and 
highly anisotropic scattering of radiation in their thickness. 
For this reason the solution of the NRTE in the transport 
approximation must be used for S i 

sas since it describes fairly 

well the energy redistribution in the process of multiple 
scattering of radiation. In this case the structure (angular 
distribution) of the brightness field is described by the 
exactly calculated terms of series (14).  

In conclusion we note that to solve a wide range of 
applied problems in photometric theory of the DLF we may 
use the solutions of the NRTE derived in the 
approximations of quasi–single Si(1) (for n = 1 in Eq. (14)) 

and quasi–double Si(2) (for n = 2 in Eq. (14)) scattering of 

radiation. It should be noted that Si(1) is applicable only in 

the case in which x(γ) is more forward–peaked function in 
comparison with the source scattering phase function (the 
Green's function of the matrix NRTE for an elementary 
isotropic emitter), otherwise Si(2) must be used (the Green's 

function of the matrix NRTE for an elementary collimated 
emitter). As a result, the method of the Green's functions 
provides highly accurate calculations of the structure and 
integral energetic parameters of the DLF of arbitrary form 
in turbid atmospheric aerosol and natural water media.  
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