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A generalized algorithm for selecting optimal spectral channels for solving the 
sounding and absorption gas analysis problems is proposed.  The algorithm is based on 
calculating information distance in space of gaseous object states.  The conditions 
under which the problem of calculating the information distance is solved analytically 
and four algorithms that could be of practical interest are proposed. 

 
INTRODUCTION 

 
Knowledge of informative spectral channels is of great 

importance when optical devices are designed for operation 
in the atmosphere.  The effective mathematical algorithms 
are needed to analyze absorption spectra of atmospheric and 
foreign gases in a wide wavelength range and to choose 
optimal spectral channels.  In the light propagation problem 
the channels are selected based on the requirement for 
radiation energy transport over the atmospheric paths with 
minimum losses.  These spectral intervals have to be chosen 
within the so–called atmospheric transmission windows.  In 
the problems of gas analysis based on absorption 
spectroscopy the intervals are chosen in absorption bands of 
the gases under study for providing maximum sensitivity 
and selectivity with respect to gases. 

In Ref. 1 we have proposed an algorithm for selecting 
spectral channels informative for solving the problems of gas 
analysis using a laser–excited optoacoustic detectors (OAD).  
This algorithm is based on the analysis of the average risk 
owing to adoption of one of the alternative statistical 
hypotheses H

1
 or H

2
 (e.g., H

1
 means the absence of the gas 

under study in the mixture, H
2
 – the presence of the gas). 

In this paper a new algorithm for selecting optimal 
spectral channels informative for solving the problems of 
the absorption gas analysis and light propagation is 
presented. 
 

BAYES CRITERION OF STATE 

DISTINGUISHABILITY 
 

In the problems of absorption gas analysis the relation 
between the measured signals and the analyzed parameter in 
the general form can be written as  
 

y = y
0
 η f(Kx + β) , (1) 

 

where y and y
0
 are the measured energy characteristics of 

radiation at the input and output of a medium under study, 
η is the sensitivity of the measuring system, f(⋅) is some 
functional (nonlinear, in the general case) of concentration 
x (analyzed parameter) of a gas and the absorption 
coefficient β of other gases and aerosol, and K is the 
coefficient of absorption per unit concentration of the gas. 

In general, y and y
0
 are assumed to be n–dimensional 

random vectors with the components yi = y(λi), 

y
0i = y

0
(λi), i = 1, ..., n;  x is the m–dimensional vector of  

concentrations of the analyzed gases of the mixture with 
components xj, where xj is the jth gas concentration,  

j = 1, ..., m, m ≤ n; β is the n–dimensional absorption vector 
of foreign gases; K – (n×m) is the matrix of absorption 
coefficients. 

Let us assume that there are two classes of states Y
1
 and 

Y
2
, and y can belong to one of them.  The classes of states Y

1
 

and Y
2
 are fixed by conventional probability densities 

p(y/Y
1
) and p(y/Y

2
).  The fact that the signal y belongs to 

the class of results Yr is, in turn, associated with the fact that 

the gas concentration vector x belongs to the class of states 
Xr, r = 1, 2.  Let q and p = 1 – q be the a priori probabilities 

of the fact that the unknown parameter y belongs to the 
classes Y

1
 and Y

2
.  Moreover, the probability density p(y

0
) of 

the interfering parameter y
0
 is assumed to be known. 

To check the hypotheses that y falls either into the Y
1
 or 

Y
2
 class we make use of the Bayes solving rule which 

minimizes the solution error.2  In what follows we shall 
concentrate on the solution error ε equal to 
 
ε = qε

1
 + pε

2
 ,  

 
where   
 

ε
2
 = ⌡⌠

–∞

μ

 p(h/Y
2
)dh , ε

1
 = ⌡⌠

μ

∞

 p(h/Y
1
)dh ; 

 

μ = ln(q/p) , h = ln[p
∼
(y/Y

2
)/p

∼
(y/Y

1
)]

 

. 

 
Here p(h/Yr) is the probability density of the random value h:  

 p
∼
(y/Yr) is the density of the random vector y averaged over 

p(y
0
). 

Let the initial distributions p(y/Yr) and p(y
0
) be normal 

with the parameters (Myr, Vy) and (M
0
, V

0
), where Myr is 

the vector of the average value in the class Yr, r = 1, 2;  Vy = 

diag{σy
2(1), ..., σy

2(n)} is the diagonal matrix of covariation of 

the vector y, the same for both classes Y
1
 and Y

2
;  M

0
 is the 

vector of the average value y
0
;  V

0
 = diag{σ

0

2(1), ..., σ
0

2(n)} is 

the matrix of covariation of the vector y
0
. 
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Taking into account the fact that the measurement 
errors ξy and ξ

0
 are independent and σ

0
 does not depend on 

y
0
 we obtain normal distribution p

∼
(y/Yr) with the 

parameters (Mr, Vr), where 

 
Mr(i) = M

0
(i) ηi fi (Kxr + β) , r = 1, 2, (2) 

 

Vr = diag{σ2

r(1) ... σ
2

r(n)} , r = 1, 2 . (3) 

 
Here xr is the vector of gas concentration in the class 

Xr, r = 1, 2;  M
0
(i), ηi, and fi are the ith components of 

the vectors M
0
, η, and f. 

The values of variances σr
2(i) are calculated by formula 

 
σ2

r(i) = σ2

y(i) + σ2

0
(i) η2

i fi (Kxr + β) . (4) 

 
To determine the classification error ε it is necessary to 

know the probability distribution of the logarithm of the 
likelihood ratio p(h/Yr).  The following assumption is 

introduced: in both hypotheses the variances σr
2(i), r = 1, 2 

are taken equal and independent of the value h, i.e., 
 
σ2

1
(i) = σ2

2
(i) = σ2(i) ,   i = 1, ..., n.  

 
Then we have V

1
 = V

2
 = V and the distribution 

p(h/Yr) is normal with the parameters (ηr, Σ), r = 1, 2,  

η
1
 = – η

2
 = – E, Σ = 2E, and the expression for ε takes the 

form with q = p = 0.5 
 

ε = 0.5 ⎣
⎡

⎦
⎤1 – Φ⎝

⎛
⎠
⎞E

2  , (5) 

 

where   
 

E = 
1
2 (M2

 – M
1
)T V –1(M

2
 – M

1
); (6) 

 

Φ(x) = 
2

π
 ⌡⌠

0

x

 
 e

–t2dt .  

 
The vectors M

1
 and M

2
 entering into expression (6) are 

given by formula (2);  the symbol T denotes the transposed 
matrix;  elements of the diagonal matrix V are determined by 
formula (4) where it is reasonable to take for xr that vector, of 

x
1
 or x

2
, for which the elements σ2(i) are maximum 

 

σ2(i) = max {σ2(ai, x1
), σ2(ai, x2

)}  (7) 

 
or   
 

V(x) = max {V(x
1
), V(x

2
)} , (7a) 

 
where ai is the ith row of the absorption coefficient matrix K.  

By taking the maximum value of the two values σ2(i) we shall 
overestimate ε, this makes it possible to improve the accuracy 
of distinguishing between the signals y(x

1
) and y(x

2
). 

 

THE RELATIONSHIP OF CLASSIFICATION ERROR ε 

AND THE INFORMATION DISTANCE IN THE SPACE X. 

 
Consider the value d(Yi, Yj) = 2E(Mi, Mj) which is a 

distinguishability measure for the pair of states Yi and Yj in 

the measurement space (see Eq. (6)): 
 
d(Yi, Yj) = d(i, j) = (Mi – Mj)

T V 
–1 (Mi – Mj) , (8) 

 
and satisfies the conditions   

a) d(i, j) ≥ 0, d(i, j) = 0 when i = j;  b) d(i, j) = d(j, i);  

and, c) {d(i, j)}
0.5

 ≤ {d(i, k)}
0.5

 + {d(k, j)}
0.5

 . 

The first two conditions are obvious, the third condition 
(inequality of triangle for pair states (i, j), (i, k), and (k, j)) 
can readily be proved using the Cauchy inequality.3  The 
value d satisfying the conditions "a", "b", and "c" is the 
squared distance in the space of results between the classes Yi 

and Yj. 

Let the class X
1
 be a gaseous object characterized by the 

state x, and X
2
 be the class characterized by the state x + dx, 

where dx is the differential of vector x.  Then in the space of 
results the vector (M

2
 – M

1
) can be represented in the form 

 
M

2
 – M

1
 = F(K(x + dx) + β) – F(Kx + β) = Rdx , (9) 

 
where F  is the n–dimensional vector with the components  
 

F(i) = M
0
(i) ηi f 

⎝
⎜
⎛

⎠
⎟
⎞

∑
j=1

m

 
 Kij x(j) + β(i)  ;  

 
R is the (n×m)–dimensional matrix with the components 
 

Rij = 
dF(i)
dx(j) ,   i = 1, ..., n ;   j = 1, ..., m .  

 
By substituting Eq. (9) into Eq. (8) one comes to the 

following relation: 
 

(dL)2 = dxT RT V –1 R dx = dxT G dx , (10) 
 

where G = RT
 V 

–1
 R

 
. 

Relation (10) is a differential quadratic form of the 
variables x

1
, ..., xm being the projections of the vector x and 

determines the squared distance between the states x and x + 
dx in the space X.  Elements of the matrix Gij determine a 

matrix tensor in the Riemann space.4  A finite distance 
between the points given by the radius–vectors x

1
 and x

2
 are 

determined as a minimum length of the parametric curve x(t), 
t
1
 ≤ t ≤ t

2
. 

 

L = min
x∈X

 ⌡⌠
 
 zTGz dt . (11) 

 

Minimum is taken over all the unbroken differential curves 
x(t) the end points of which are fixed, i.e., x(t

1
) = x

1
, x(t

2
) = 

x
2
 (see Ref. 4).  The components of vector z are given in the 

form z(j) = dx(j)/dt.  The elements of the matrix G depend 
on t with respect to the vector projection x, i.e., 
 

Gij = Gij [x1
(t), ..., xm(t)] .  
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It should be noted that V.P. Kozlov (see Refs. 5 and 
6) was the first who proposed to employ the Riemann 
information metrices for estimating the limiting capabilities 
of spectrophotometric measurement methods. 

From formulas (6)–(8) and (10) follows the relation 
for the classification error ε and the information distance L 
in the state space X 
 

ε(i, j) ≥ 
1
2 ⎣
⎡

⎦
⎤1 – Φ

⎝
⎛

⎠
⎞L(i, j)

2 2
 . (12) 

or 

ε ≥ 
1
2 ⎣
⎡

⎦
⎤1 – Φ

⎝
⎛

⎠
⎞L

2 2
 . (12a) 

 

CALCULATION OF INFORMATION DISTANCE L 
 
Consider the method of calculating L.  Minimization 

of Eq. (11) is equivalent to the solution of the system of 
differential equations (the Euler equations)7 
 

∂2Θ

∂z2

j

 z′j + 
∂2Θ

∂xj ∂zj
 zj + 

∂2Θ

∂t ∂zj
 – 

∂Θ

∂xj
 = 0 , (13) 

 
where   
 

Θ = zTG z = Θ[x
1
(t), ..., xm(t);   z

1
(t), ..., zm(t)].  

 

Analytical solution of system (13) can be obtained 
only in the case when the vector y is linearly related to the 
vector x, i.e., y g Kx + β.  Here the elements of the matrix 
Gij = {RTV 

–1R}ij are independent of xj(t).  Therefore the 

second and fourth terms in Eq. (13) vanish and the 
following system of differential equations appears 
 

⎣
⎢
⎡

⎦
⎥
⎤

GijΘ
2 – 

⎝
⎜
⎛

⎠
⎟
⎞

∑
l=l

m

 
 Gil zl z′j + ∑

l=1

m

 
 Gil z′lΘ

2 – 

 

– ∑
l=1

m

 
 Gil zl∑

j k

m

 
 z′jGik 

zk = 0 . 

 
A solution of this system is  

 
zj = const = aj ,   xj = aj t + bj ,   j = 1, ..., m,  
 

and the integration constants aj and bj are determined from 

the conditions 
 

xj(t1) = aj t1 + bj = ρ 
j

1
;   xj(t2) = aj t2 + bj = ρ 

j

2
; t

1
 = 0,   t

2
 = 1. 

 
The resulting expression is 

 

xj(t) = (ρ 
j

2
 – ρ 

j

1
)t + ρ 

j

1
 ;   zj(t) = (ρ 

j

2
 – ρ 

j

1
) ;  

L = ⌡⌠
0

1

 
 zTG z dt = zTG z , (14) 

 

where ρ
1
 
j
, ρ

2
 
j
 are the boundaries of the jth gas concentration range. 

By comparing Eqs. (14) and (6) one can notice that 

the information distance L = 2E for the linear relationship 
between the vector y and gas concentration x (y g Kx + β). 

The analytical solution of system (13) cannot be 
obtained for nonlinear relation between y and x vectors.  
However, it is possible to separate out three important 
examples where the variational problem (11) possesses a 
solution even for a nonlinear model. 

The first example is related to a single–parameter state 
(m = 1).  The expression for L when m = 1 takes the form  

 

L = ⌡⌠
ρ
1

ρ
2

 
 RT V –1R dx , (15) 

 
i.e., the value L can be calculated using a conventional 
integration of a function of one variable. 

The second example is related to a single wave method 
of y (n = 1) measurement.  In this case the elements of 
matrix Gij are reduced to the products of components of the 

vector Q, i.e., Gij = QiQj and relation (11) takes the form  

 

L = ∑
j=1

m

 
 ⌡⌠
ρ
j
1

ρ
j
2

 
 Qj(x1

, ..., xm) dxj . (16) 

 
And, finally, the analytical solution of variation of 

problem (11) is related to the situation when n = 1 and  
m = 1.  From Eq. (11) immidiately follows the result:  

 

L = 
M

0
η

σ ⌡
⎮
⌠

ρ
1

ρ
2

 
  

∂f
∂x

  dx , (17) 

 
where the function f is assigned by formula (1). 
 

CRITERION OF SEARCHING FOR OPTIMAL  

SPECTRAL CHANNELS 
 
The information length L depends on characteristics of 

the measuring system (σy, σ0
, M

0
, η) and the matrix of 

absorption coefficients K which, in turn, is wavelength 
dependent.  For simplicity, let us consider the case of n = 1 
and m = 1.  The value L is determined by formula (17) and is 
a function of the wavelength λ.  The value L changes with λ.  
The larger the value L the smaller is the classification error ε 
of a gaseous object and, hence, more reliable is the detection 
of a gas with a given device.  On the contrary, the smaller the 
value L the larger is ε and, hence, less promising is a given 
spectral interval for measuring the gas content.  If for all 
atmospheric gases with the absorption bands in a given 

spectral region the value L is small (it is desirable that L � 

1), then it is apparent that this spectral region holds promise 
for light propagation problems. 

Thus the problem on searching informative spectral 
intervals is reduced to calculating the length L.  The 
search–for criterion for the problems of gas analysis can be 
presented in the form 
 

L(λ) → max
λ

 , or L(λ) ≥ L
0
 ; (18) 

 
and for the problems of light propagation  
 

L(λ) → max
λ

 , or L(λ) � 1 ;  (19) 
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In expression (18) L
0 

is the threshold value of 

information distance which is uniquely related to the 
threshold value ε

0
 of the classification error.  For practical 

purposes, most common is the value ε
0
 = 0.05 which 

corresponds to L
0
 = 3.3. 

In Ref. 6 Gal'tsev et al. proposed the value L to be 
interpreted as a number of pair distinguishable states of the 
gaseous object within the interval [x

1
, x

2
] and L

0
 = 1 being 

taken as the threshold value.  When L < L
0
 the states x

1
 and 

x
2
 cannot be distinguished using this device, when L > L

0
 a 

number of the pair distinguishable states equals L + 1.  
Recognizing the importance of interpretation of L proposed in 
Ref. 6 it should be noted, however, that there is a subjective 
factor associated with the choice of the value L

0
 = 1.  When 

L
0
 = 1 the error ε = 0.3, which is rather a large value.  In 

practice, as was noted above, the value ε is conventionally 
taken at a level of 0.05 and lower which corresponds to  
L = 3.3 and larger. 

 
CONCLUSIONS 

 
The proposed criterion for selecting optimal spectral 

channels is a simplification of the approach we have earlier 
discussed in Ref. 1.  In contrast to Ref. 1, in this paper we 
use a simple hypotheses in both of the state classes X

1
 and 

X2 of the information parameter x.  Moreover, in these 

hypotheses the variances were taken equal and signal 
independent that enabled one to relate the solution error ε 
to a single parameter E (in Ref. 1 the average risk was 
calculated which was expressed through two parameters g

1
 

and g
2
).  Such an approach makes it possible to construct 

an effective search for algorithms for more complicated 
physical models describing the signals, in particular, for 
multidimensional and nonlinear models with any spectral 
resolution. 

The introduction of a differential form of the 
information distance (dL)2 (see Eq. (10)) has made it 
possible to pass from discrete states xr to the continuous 

ones.  As a result, the parameter L appeared which has more 
profound sense of a measure of the state distinguishability 
in the problem of object classifications.  The value L can be 
treated as a number of distinguishable pair states in the 
given range of concentrations [(ρ

1
, ρ

2
].  The information 

distance in the classification problem was first introduced in 
Refs. 5 and 6 to determine the limiting capabilities of 
spectrophotometric methods for measuring gas contents.  
For practical purposes, Gal'tsev et al.6 proposed an 
algorithm of the form of Eq. (17) (n = 1, m = 1).  In this 
paper the conditions are described under which variational 
problem (11) is solved analytically and four general 
algorithms (14)–(17) have been derived.  In the second part 
of this work from these algorithms the formulas have been 
derived for specific spectral devices operating based on the 
principle of absorption. 

In conclusion the author thanks Drs. G.N. Glazov and 
S.D. Tvorogov for their useful discussions and critical 
comments at the starting point of this work. 

 
APPENDIX 

 
Let us introduce some definitions. 
Gas object is a gas mixture of certain gases with 

absorption spectra in the optical region. 

State of a gas object (in space of the information 
parameter X) is a gas mixture composed of different gases 
with some concentrations given by the vector x. 

Measurement vector (observational vector) y is a set 
of measured energy characteristics of a gas object (e.g., 
optoacoustic signals at different wavelengths generated by 
an optoacoustic cell with a gas mixture when optical 
radiation passes through it). 

State in the measurement space Y (in the space of 
results) is given by the measurement vector y uniquely 
associated with the vector x.  The vector y represents some 
(in general, nonlinear) transformation of the vector of a gas 
object states x. 

Class of states in space X is a set of random states of 
a gas object given by the vector x. 

Class of states in space Y is a set of random states 
given by the vector y.  It is determined by both states of a 
gas object and states of a measuring device. 

Let us now consider briefly the problem of 
classification and its relation to the problem of choosing the 
informative wavelengths. 

Let the measurement vector y be a random vector with 
the conventional probability density p(y/Yr), r = 1, ..., l.  

The probability density p(y/Yr) depends on the class Yr 

which the vector y is being from.  If the conventional 
probability density is known for each class Yr, then the 

problem of classifying the gas objects is reduced to 
statistical varification of hypotheses. 

Consider the case of two classes (r = 1, 2).  It is 
necessary to check the hypothesis H

2
 that the vector y 

belongs to the class Y
2
 in contrast to the alternative H

1
: y 

∈ Y
1
.  The Bayes solving rule minimizing the solution error 

has the form2 
 

p(y/Y
2
)p(Y

2
) >< p(y/Y

1
)p(Y

1
) → y ∈ 

⎩
⎨
⎧Y2

Y
1

  (A1) 

 

or  
 

l(y)= 
p(y/Y

2
)

p(y/Y
1
) 
>
< 

p(Y
1
)

p(Y
2
) → y ∈ 

⎩
⎨
⎧Y2

Y
1

 , (A2) 

 
where p(Y

1
) and p(Y

2
) are the a priori probabilities of 

the fact that the vector y is from the classes Y
1
 and Y

2
, 

respectively.  The sign of inequality determines whether 
the object characterized by the vector y belongs to the 
class Y

1
 or Y

2
. 

The value l(y) is called the likelihood ratio, and 
p(Y

1
)/p(Y

2
) is the threshold for a given solution rule.  In 

many cases it is more convenient to use the logarithm of the 
likelihood ratio h(y) instead of l(y): 

 

h(y) = ln(l(y)) >< μ = ln(p(Y
1
)/p(Y

2
)) → y ∈ 

⎩
⎨
⎧Y2

Y
1

  (A3) 

 
The solution rule (A3) does not provide a correct 

classification.  The probability of the event that we 
misassign the measured vector y to a given class Yr is called 

the probability of the solution error or merely the solution 
error.  The distribution p(h/Yr) is shown schematically in 

the figure.  The shaded sections under the distribution 
curves represent the errors of the first and second kinds ε

1
 

and ε
2
 calculated by formulas 
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ε
2
 = ⌡⌠

–∞

μ

 
 p(h/Y

2
) dh, ε

1
 = ⌡⌠

μ

∞

 
 p(h/Y

1
) dh . (A4) 

 

The total error is found as a weighted mean sum of 
these errors 

 
ε = p(Y

1
) ε

1
 + p(Y

2
) ε

2
 . (A5) 

 

 
 

FIG. 1.  Distribution of the logarithm of likelihood ratio. 
 

It can readily be seen from relations (A4) and (A5) 
that the value ε does not depend on the measured vector y 
and therefore can be calculated before the experiment is 
carried out.  Since p(h/Yr) depends on specifications of the  

measurement system, absorption coefficients, and gas 
concentrations, ε can be treated as a generalized parameter 
of the potential of a device for analyzing the gas mixture 
content.  An essential feature of the problem under study is 
the dependence of ε on the absorption coefficients which 
are, in turn, wavelength dependent.  This fact is used in our 
further discussions of the construction of the algorithm for 
selecting optimal spectral channels. 
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