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This paper presents a discussion of qualitative studies of the rotational energy of 

nonrigid molecules of H2X type on the quantum number K characterizing a projection 

of the angular momentum operator onto the molecular linearization axis Z. The 
frequencies of rotational and rovibrational transitions are processed for the CH2 

molecule using the generating functions for an effective rotational Hamiltonian. 
Rotational energies of the vibrational states (000) and (010) are reconstructed. 

 
INTRODUCTION 

 
The methyl radical CH2 is one of the simplest free 

radicals playing an important role in molecular spectroscopy 
and chemistry.1–6 The presence of this molecule in the 
upper layers of the atmosphere, comet tails, and interstellar 
space may also be mentioned. From a spectroscopic point of 
view, CH2 attracts particular interest because it is one of 

the simplest neutral molecules with a triplet ground 
electronic state. Moreover, the CH2 molecule, as well as 

other light molecules (H2O, NH2, …), possess bending 

vibration of large amplitude. However, in contrast to other 
such molecules, the effects of nonrigidity, due to this 
vibration, are much stronger in CH2 and caused by the fact 

that an equilibrium configuration of this molecule is close to 
the linear one. According to estimates from Ref. 6 the 
energy barrier h between the actual and a linear 
configuration of the molecule is about 1900 cm–1. For the 
H2O molecule, h g 10055–10900 cm–1, (see Ref. 7). 

One of the consequences of the nonrigidity effects in 
CH2 is the divergence of the effective rotational 

Hamiltonian (in Watson form) used for processing the 
experimental results 
 

HW = ∑
ij

 aij N
2i N2

z 
j + ∑

ij

 bij N
2i {N2

z
j, N2

x – N2
y} , (1) 

 
where Nx, Ny, and Nz are components of the operator of 

angular momentum N with respect to the molecular system 
of axes in the Ir representation. A large number of 

centrifugal distortion constants in HW is indicative of its 

divergence. Thus, in Ref. 1 eleven constants for processing 
of fourteen rotational transitions were used. In Ref. 5 some 
parameters of series (1) were fixed by taking for their 
values those obtained by processing the energy levels 
previously calculated from the molecular force field. 

In the literature (see, e.g., Refs. 3 and 6) there are 
some methods of correct account for rovibrational 
interaction which allow one to reconstruct the molecular 
energy levels from the force field. However, the precision of 
these methods in reconstructing the experimental results is 
lower than that of the method, where the Hamiltonian HW 

is used, in spite of its divergence. 

This paper deals with the following problems. First, 
the dependence of rotational energy of a triatomic H2X 

molecule on the rotational quantum number K is analyzed 
qualitatively. Second, the generating functions are 
constructed for the rotational Hamiltonian Hr of the CH2 

molecule which are then used for processing of frequencies 
of the rotational and rovibrational transitions, and third, 
the rotational energy levels of the ground and (010) 
vibrational states of this molecule are calculated using the 
parameters of the rotational Hamiltonian Hr obtained from 

the processing of frequencies. 
 

1. QUALITATIVE ANALYSIS OF THE K–
DEPENDENCE OF THE ROTATIONAL ENERGY OF 

H
2
X MOLECULES 

 
In the rotational Hamiltonian HW the subsequences 

containing powers of the operator J2
Z (Z is the linearization 

axis of the molecule) are most long. The inverse tensor of 
inertia A(ρ) undergoes a strong change with respect to this 
axis during a large amplitude vibration. The coordinate 
ρ = π – γ describes a vibration of a large amplitude where γ 
is the HXH angle in the reference configuration of the 
molecule.7 A diagonal part of the Hamiltonian (1) in the 
basis of wave functions |J, K> takes the form (although in 
the general case J = N + S, here the case of S = 0 is 
considered)  
 

h J(K) = ∑
i

 ai(J) K2i = < J, K ⏐Hdiag
W ⏐ J, K > , (2) 

 

with the J–dependent parameters ai: 
 

ai(J) = a0i + a1i J(J + 1) + a2i [J(J + 1)]2 + ... . (3) 
 

Subsequences of the type (3) converge sufficiently 
rapidly, therefore in the subsequent discussion the 
convergence of series (2) with respect to the quantum 
number K is considered, J being assumed to be fixed (the 
index J is omitted below). The function h J(K) (for which 
the coefficients of Taylor expansion coincide with the 
parameters of Eq. (3)) can be reconstructed, in the first 
approximation, based on numerical integration of the 
Schrödinger equation 
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 – μ 
∂2

∂ρ2 + V0(ρ) + A(ρ) K2  ψ = h(K) ψ (4) 

 

with the potential function V0(ρ) and function A(ρ) being 

preset. 
For triatomic molecules of the H2X type 

 
A(ρ) = a/sin2(ρ/2) ;  a = h/8π2c(1 + δ)/(2mH r

2
0) ; 

 
δ = 2mH/mX . (5) 

 
where mH and mX are the masses of atoms H and X, 

respectively, and r0 is the distance between these atoms in 

the reference configuration of the molecule. In this study we 
are interested in a possible analytical form of the function 
h(K) therefore let us pass from Eq. (4) to estimation of the 
molecular energy based on the following relation8 
 
h(K) = N/2L2μ + V0(L) + A(L) K2 . (6) 

 
In Eq. (6) N = (n + 1/2)2, n is the vibrational quantum 
number, and L is the specific length of the region of ρ 
variation which is determined from the condition ∂h/∂L = 0. 
For a harmonic oscillator V0(ρ) = ω2/2μ(ρ – ρe)

2 and Eq. (6) 

in combination with the condition ∂h/∂L = 0 are written in 
the form (ρe is the equilibrium value of the angle ρ)  
 
h(K) = N/2L2μ + ω2L2/2μ + aK2/sin2((L + ρe)/2) , (7) 

 

∂h/∂L = 0 = – N/L3μ + ω2L/μ – 
aK2sin (L + ρe)

2sin4 ((L + ρe)/2)
 . (7a) 

 
The n dependence, as in Ref. 8, is chosen so that at K = 0 
we obtain the exact solution for the harmonic oscillator 
h(K = 0) = ω(n + 1/2). 

A complicated behavior of the inverse tensor of 
inertia A(ρ) does not make it possible to find the exact 
solution for L from Eq. (7a) in the general form and to 
estimate h(K). Consider three groups of molecules with 
the specific value ρe. 

A. A group of quasilinear molecules with ρe | 0. By 

expanding in Eqs. (7) and (7a) the last terms into a series 

over the value ρe/L < 1 and taking into account only the 

first terms of these expansions (in zero approximation), we 
have 

 
L0 = (N + 8 aK2/μ)μ2/ω2 , 

 

h0(K) = h(K, L0) = ω (n + 1/2)2 + 8 aK2/μ . (8) 

 
For triatomic molecules of the H2X type, 

μ = B
q
(ρe) g 4a, where a g 10 cm–1 at r0 g 1 Å. Depicted 

in Fig. 1 are the dependences h0(K) calculated by Eq. (8) 

(with respect to the level h(K = 0)) for the above values of 
a and μ and ω = 250 cm–1 and 1000 cm–1 and ρe = 0.05 rad 

(n = 0). Dashed lines in the figure denote the dependence 
h(K) obtained from numerical solution of Eq. (7) for the 
same values of ω and ρe. It can be well seen that the 

functions h0(K) give the linear dependence on K even at 

small K values since the relation 8 aK2/μ � N2 is valid for  

them what reduces Eq. (8) to the relation h0(K) g θ⏐K⏐, 

where θ is a constant. The circles in Fig. 1 denote the intervals 
where the functions h(K) give approximately linear 
dependence on K. Thus the functions h(K) have the form of 
straight lines "joined" at certain values of the quantum 
number K. To describe this function using a power series of 
the type (2) one should have approximately as many variable 
parameters ai as the number of the values of the function 

h(K). If the energy level with K = 0 is taken as the reference 
energy level then instead of h0(K) it is convenient to introduce 

the function 
 

G(K) = 
1 + αK2 – 1

2α  (9) 

 
with the J–dependent parameter α 
 
α = α0 + α1J(J + 1) + α2[J(J + 1)]2 + ... . 

 
Function (9) was first introduced in Refs. 9 and 10 for the 
water molecule and was generalized in Refs. 11 and 12. The 
function (9) differs from those considered in Refs. 9–12 by 
the fact that the parameter α0 > 1, and this is the specific 

feature of quasilinear molecules. 
The functions h(K) obtained from Eq. (7) (dashed 

curves in Fig. 1) can be described by the analytical 
relation9–12 
 
h(K) = γ1G + γ2G

2 + γ3G
3 + ... . (10) 

 
In particular, for ω = 250 cm–1 (the lower dashed curve in 
Fig. 1) to describe the first ten values accurate to g 1 cm–1 
it is sufficient to take three variable parameters γi in 

Eq. (10). In this case α = 4.6. To obtain the same accuracy 
with polynomial representation (2), ten parameters ai are 

needed, since nine parameters from Eq. (2) give maximum 
divergence about 20 cm–1 in reconstructing this curve. 
 

 
 

FIG. 1. Calculated by Eq. (8) (solid lines) and Eq. (7) 
(dashed lines) dependences of rotational energy of a 
quasilinear triatomic molecule of the type H2X (with 

ρe = 0.05 rad) on the quantum number K (for a hypothetical 

level J = 0). 
 

B. Molecules with ρe | π. By substituting π = ρe + γe 
and expanding, as in the previous case, the last component of 

Eq. (8) over the value γe/L < 1, we obtain in zero 

approximation 
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h0(K) = h0(K, L0) = aK2 + ω(n + 1/2) 1 + aμ K2/2ω2. (11) 
 

In relation (11) the first term describes rotational energy of 
a rigid–top 
 

Ert = aK2 , 
 

and the second term accounts for the rovibrational 
interaction in the molecule and can be considered as a 
correction to Ert. For a wide range of quantum numbers, the 

square root in Eq. (11) can be expanded into a series of 
type (2), and for the ratio of constants ai in this series one 

can obtain the estimate  
 

⏐ai+1/ai⏐ = aμ/4ω2 ,  i > 1 . 
 

The radius of convergence Rc of such a series can be 

determined from the relation 
 

Rc = ω 2/aμ . 
 

For the molecules of the H2X type at the frequencies ω of the 

order of 1000 cm–1 Rc g 80 and the ratio |ai+1/ai| g 10–4. It is 

evident that for such molecules the terms describing the 
rovibrational interaction can be related to perturbation, the 
series of the perturbation theory being convergent. 

C. Molecules for which ρe g L. This group of 

molecules is obviously intermediate between the above 
considered. Such nonrigid molecules as H2O, NH2, etc. are 

also attributed to it. It is not possible to obtain analytical 
solution for L from Eq. (7) in any reasonable 
approximation. These solutions can be obtained for different 
values of the parameters ρe, ω, a, and μ. Figure 2 depicts 

the energies h(K) calculated by Eq. (7) for different values 
of ρe at the frequency ω = 1500 cm–1. 

 

 
 

FIG. 2. Calculated by Eq. (7) dependences of rotational 
energy of nonrigid triatomic molecules of the H2X type on 

the quantum number K (for a hypothetical level J = 0 and 
ω = 1500 cm–1). The value of an equilibrium angle ρe is 

given in parentheses. 
 
2. GENERATING FUNCTIONS FOR THE EFFECTIVE 
ROTATIONAL HAMILTONIAN H

r
 OF A MOLECULE 

OF THE H
2
X TYPE 

 
The effective rotational Hamiltonian Hr of the 

asymmetric top molecule can be written in the general 
form10 as follows: 

Hr = F(J2, J2
z) + {χ(J2, J2

z), J
2
xy} . (12) 

 

The functions F and χ are called generating functions for 
diagonal and off–diagonal (in the basis of rotational wave 
functions |J, K>) parts of the Hamiltonian Hr. The 

expansion of these functions into the Taylor series results in 
polynomial representation (1) for Hr. 

Let us turn back to Eq. (4) in which only the coordinate 
ρ is the dynamic variable. The quantum number K enters into 
Eq. (4) as a parameter. The function h(K) can be considered 
as zero approach F0 to the function F(K) = <J, K| F |J, K>. 

Equation (4) implies analytical solution for some forms of the 
potential function V0(ρ) and K = 0. Simulation of the 

function A(ρ) by some function A
∼
(ρ) with the same qualitative 

behavior, within the interval of ρ variation, as the function 
A(ρ) can provide the solution for h(K) at K ≠ 0 as well, see 
Refs. 13 and 14. The main contribution of F0 to the function 

F is determined from the relation 
 

F0 = h(K) – h(K = 0) (13) 
 

describing the rotational structure of this vibrational state. In 

particular, for V0(ρ) = ∑
k=0

2

 ck th
kα(ρ – ρe) and A

∼
(ρ) = ∑

k=0

2

 a∼k × 

× thkα(ρ – ρe) the solution F0 can be written in the form (if 

in the formula for h from Ref. 13 we make a substitution 
K2 = γ1G + γ2G

2) 
 

F0 = 
g1G + g2G

2 + g3G
3 + g4G

4

1 + β1G + β2G
2  . (14) 

 

In Eq. (14) G is determined by formula (9). For small 
values of the parameter α and small K the function G can 
be expanded into the Taylor series 
 

G(K) = K2 + χK4 + ... . (15) 
 

The convergence radius Rc = 1/α of the expansion (15) is 

determined from condition αK2 = 1, (see Refs. 9 and 10). 
Following the qualitative consideration made in Sec. 1 it is 
possible to assume that for a quasilinear molecule of the 
CH2 type the parameter α, at least for some vibrational 

states, proves to be sufficiently large and in function (14) it 
is necessary to make the substitution G → χ|K|. The 
generating function F0 takes the form 
 

F
∼

0 = 
g∼1⏐K⏐ + g∼2 K

2 + ...

1 + β
∼

1⏐K⏐ + ...
. (16) 

 
3. PROCESSING OF THE EXPERIMENTAL DATA  

ON THE RADICAL CH
2
 

 
We have used in our study the functions (14) and (16) 

for processing frequencies of rotational and rovibrational 
transitions of the radical CH2 given in Ref. 1. In the first 

case the function 
 

χ = ∑
ij

 b*i j N
2i {G j, N2

x – N2
y} (17) 

 

was used as an off–diagonal part of the Hamiltonian Hr and 

in the second case it was the function 
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χW = ∑
ij

 bij N
2i {N2

z
j, N2

x – N2
y} , (18) 

 
coinciding with the off–diagonal part of the 
expansion (1). Let the Hamiltonian composed of 
functions (14) and (17) be called HG and that composed 

of functions (10) and (18) HLIN. In both cases the 

function g0(N) determining the value of the molecular 

energy with K = 0 is taken as the series 
 
g0(N) = g00 + g10 N(N + 1) + g20[N(N + 1)]2 + ... . 

 
Nineteen frequencies of rotational transitions with 

N ≤ 7 and Na ≤ 4 are known for the ground state.6 The 

quality of processing of the experimental data is 
characterized by the value 

 

∑  = ∑
i

 (νo
i
bs – νc

i
alc)2 . 

 

Table I lists the values of Σ obtained by processing these 
frequencies using different representations of the rotational 
Hamiltonian Hr. 

At the next step the frequencies of rotational transitions 
were processed in combination with frequencies of the 
rovibrational transitions of the band ν2 (61 frequencies with 

N ≤ 10 and Na ≤ 1, (see Ref. 6)). The combined processing 

yields Σ g 10–4 cm–2 for the models HG and HLIN. The 

obtained parameters of the Hamiltonians are given in Table II. 
As can be seen from the table, the value of the parameter 

α0 in the G–function of the Hamiltonian HG is about 0.3 for 

the ground state and α0 g 2.2 for the state (010). Therefore 

the substitution G → χ|K| transforming Eq. (14) to (16) is 
justified. For both these states the value α0K

2 > 1 even for 

K = 2. The convergence radius Rc of power expansion of the 

Hamiltonian Hr can be estimated based on the value of the 

parameter α0. For the ground vibrational state, Rc g 2 and for 

the state (010) Rc < 1. 
 

TABLE I. Comparison of the quality of processing Σ (in cm–2) of the frequencies of rotational transitions of the radical 
CH2 made with different representations of Hr (L is the number of the used parameters). 

 

Form of Hr 
L Σ, cm–2

 

HW 8 190.0 

HG 8 53.0 

HLIN 8 0.2* 

HW 15 2.0E–4 

HG 15 4.0E–8 

HLIN 15 3.0E–7 

* For the function F
∼

0

 
= g∼2K/(1 + β1|K|). 

 
TABLE II. Parameters of the Hamiltonians H

G
 and H

LIN
 obtained from solution of the inverse spectroscopic problem for the 

CH
2
 molecule*. 

 

 Parameter   Hamiltonian HLIN 
 Hamiltonian HG 

 State (000) 
 
 

α0 
– –   0.2941188   0.17E–03 

α1 
– –   0.424887E–03   0.10E–04 

α2 
– –   0.9548E–06   0.14E–06 

g10 
  7.81711   0.11E–03   7.81725   0.75E–04 

g20 –0.352374E–03   0.34E–05 –0.367706E–03   0.15E–05 

g30 –0.37858E–06   0.26E–07 – – 

g01   0.662592   0.31E–02   66.349656   0.12E–02 

g11   0.62055E–02   0.13E–03   0.2224565E–01   0.94E–04 

g21 –0.26517E–04   0.32E–05 – – 

g02   69.549475   0.45E–02 – – 

g12   0.164757E–01   0.15E–03   0.72139E–02   0.34E–03 

g22   0.8765E–05   0.40E–05   0.17027E–04   0.25E–05 

β01   0.110125   0.27E–04 –0.197639E–01   0.26E–04 

β11   0.32495E–04   0.14E–05   0.6178E–04   0.42E–05 

u00   0.31495   0.12E–02   0.356777   0.39E–02 

u10 – – –0.9668E–04   0.66E–06 

u01 –0.166589E–01   0.14E–02 –0.68597E–01   0.49E–02 

u11 –0.92383E–04   0.66E–06 – – 

u02   0.5599E–03   0.19E–03   0.7144E–02   0.75E–03 
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TABLE II (continued) 
 

State (010)  

α0 
– –   2.1707495   0.44E–03 

α1 
– –   0.673945E–02   0.38E–04 

α2 
– – –0.13517E–03   0.11E–05 

g00 
  963.0973   0.11E–02   963.10127   0.11E–02 

g10 
  7.7283018   0.14E–03   7.727231   0.14E–03 

g20 –0.566482E–03   0.43E–05 –0.515128E–03   0.41E–05 

g30   0.9816E–07   0.27E–07 –0.35019E–06   0.26E–07 

g01   62.468   0.12E+01   214.065445   0.95E–02 

g11   0.50679   0.12E–01   0.2346553   0.75E–03 

g21 – – –0.109566E–02   0.15E–04 

g02   139.6274   0.28E+01 – – 

g12 –0.98633   0.27E–01 – – 

β01   0.312684   0.11E–01 – – 

β11 –0.37323E–02   0.10E–03 – – 

u00   0.70642   0.58E–02   0.94491   0.26E–02 

u10   0.8438E–03   0.15E–03   0.10199E–03   0.16E–04 

u01 –0.418743   0.63E–02 –0.872448   0.35E–02 

u11 –0.1021E–02   0.17E–03 –0.87734E–03   0.30E–04 

u21 – –   0.12999E–04   0.18E–06 

u02   0.296466E–01   0.59E–03 – – 

u12   0.8716E–04   0.17E–04 – – 

 

∗
 The parameters uij have a sense of the parameters b i

*
j (from Eq. (17)) of the Hamiltonian HG and bij (from Eq. (18)) of 

the Hamiltonian HLIN. In the third and fourth columns there are standard deviations of the parameters. 
 

4. CALCULATION OF ENERGY LEVELS 
 

Rotational energies of the ground vibrational state and of 
the state (010) were calculated using the parameters listed in 
Table II. The rotational energy levels are given in Table III. 
Represented here, for comparison, are the energy levels 
obtained using the variational methods.6 It is clear that the  

model of Hamiltonian HLIN gives the energy levels close to 

those obtained in Ref. 6. This means that the analytical 
solution resulting in generating function (16) is close to the 
solution from Ref. 6. The energy levels reveal a nearly linear 
dependence on the quantum number K (≡ Na) which coincides 

with the aforementioned qualitative consideration of h(K). 
 

TABLE III. Vibrational–rotational energy levels of the CH2 molecule calculated using different methods. 
 

N Na Nc (0, 0, 0) 
 

(0, 1, 0) 

 HG HLIN Ref. 6 HG HLIN Ref. 6 

0 0 0 963.10 963.08 963.07
1 0 1 15.63 15.63 15.63 978.55 978.55 978.52
 1 1 78.32 78.31 78.33 1132.02 1132.02 1131.93
 1 0 79.52 79.51 79.52 1133.29 1133.28 1133.20
2 0 2 46.87 46.87 46.86 1009.45 1009.44 1009.42
 1 2 108.46 108.46 108.46 1161.94 1161.94 1161.88
 1 1 112.04 112.04 112.03 1165.75 1165.75 1165.66
 2 1 276.27 276.27 276.23 1426.29 1430.72 1430.82
 2 0 276.29 276.29 276.24 1426.29 1430.72 1430.82
3 0 3 93.67 93.67 93.64 1055.75 1055.75 1055.72
 1 3 153.64 153.64 153.64 1206.81 1206.81 1206.78
 1 2 160.79 160.78 160.77 1214.40 1214.40 1214.33
 2 2 323.45 323.44 323.41 1473.44 1477.87 1477.99
 2 1 323.53 323.53 323.49 1473.44 1477.87 1478.00
 3 1 562.42 566.85 566.97 1753.39 1807.42 1812.44
 3 0 562.42 566.85 566.97 1753.39 1807.42 1812.44
4 0 4 155.95 155.95 155.90 1117.42 1117.42 1117.40
 1 4 213.83 213.83 213.83 1266.61 1266.60 1266.61
 1 3 225.71 225.72 225.69 1279.22 1279.22 1279.17
 2 3 386.29 386.29 386.27 1536.24 1540.67 1540.84
 2 2 386.54 386.54 386.52 1536.26 1540.69 1540.88
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TABLE III. (continued) 
 

 3 2 625.62 630.05 630.20 1818.06 1874.07 1875.73
 3 1 625.62 630.05 630.20 1818.07 1874.06 1875.73
 4 1 928.75 933.16 933.12 2104.26 2248.98 2275.75
 4 0 928.75 933.16 933.12 2104.25 2248.98 2257.75
5 0 5 233.61 233.62 233.55 1194.41 1194.40 1194.38
 1 5 289.00 289.00 289.00 1341.29 1341.29 1341.35
 1 4 306.76 306.76 306.73 1360.17 1360.17 1360.14
 2 4 464.77 464.77 464.76 1614.70 1619.12 1619.34
 2 3 465.34 465.34 465.34 1614.73 1619.16 1619.43
 3 3 704.56 708.98 709.19 1898.43 1953.58 1954.78
 3 2 704.56 708.99 709.19 1898.45 1953.58 1954.78
 4 2 1008.06 1012.48 1012.50 2191.45 2343.56 2337.27
 4 1 1008.06 1012.48 1012.50 2191.45 2343.56 2337.27
 5 1 1379.90 1362.72 1361.96 – – 2755.38
 5 0 1379.90 1362.72 1361.96 – – 2755.38
6 0 6 326.54 326.54 326.48 1286.64 1286.63 1286.62
 1 6 379.09 379.09 379.10 1430.87 1430.84 1430.96
 1 5 403.86 403.86 403.83 1457.17 1457.17 1457.18
 2 5 558.82 558.82 558.84 1708.80 1713.16 1713.45
 2 4 559.95 559.94 559.99 1708.87 1713.21 1713.62
 3 4 799.21 803.63 803.91 1994.44 2043.47 2049.53
 3 3 799.22 803.64 803.92 1994.52 2043.47 2049.55
 4 3 1103.13 1107.56 1107.69 2294.96 2403.42 2432.59
 4 2 1103.13 1107.56 1107.69 2294.60 2403.42 2432.59
 5 2 1475.12 1458.27 1457.63 – – 2851.21
 5 1 1475.12 1458.27 1457.63 – – 2851.21
 6 1 1926.62 1846.32 1844.24 – – 3297.57
 6 0 1926.62 1846.32 1844.24 – – 3297.57
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