OPTIMAL MEASURER OF THE SCATTERING PHASE MATRIX

V.G. Oshlakov
Institute of Atmospheric Optics, Siberian Branch of the Russian Academy of Sciences, Tomsk Received June 26, 1992

An optimization of a device for measuring 16 components of the scattering phase matrix is proposed. The optimized instrument allows the measurements of the scattering phase matrix to be performed with the maximum possible accuracy with errors in the initial data. The device design provides a very simple control of the polarization components.

The scattering phase matrix D relates the Stokes vector of the radiation from a source $S_{\mathrm{s}}=\left[I_{\mathrm{s}} Q_{\mathrm{s}} U_{\mathrm{s}} V_{\mathrm{s}}\right]^{\mathrm{T}}$ and the Stokes vector of the scattered radiation $S_{\mathrm{r}}=\left[I_{\mathrm{r}} Q_{\mathrm{r}} U_{\mathrm{r}} V_{\mathrm{r}}\right]^{\mathrm{T}}$ coming to the receiver by the relation
$S_{\mathrm{r}}=D S_{\mathrm{s}}$.
In the general case when the medium is anisotropic, it is impossible to indicate in advance the equal and zero elements, and so it is necessary to determine all the 16 elements of the matrix D.

Importance of the problem in measuring D have been noted in Ref. 1, and its urgency is kept up to date due to the methodological and technical difficulties.

A well-known block diagram of the device for measuring D involves an optical generator the radiation from which passes successively the polarizer and the phase element, which shifts the phase of the perpendicular components by the angle δ_{s}. Light scattered by the medium comes to the receiver, in which it successively passes through the phase element, which shifts the phase of the perpendicular components by the angle δ_{r}, the polarizer, and the interference filter. The polarization block of the radiation source transforms the Stokes vector of the output radiation of the optical generator $S_{0}=\left[I_{0} Q_{0} U_{0} V_{0}\right]^{\mathrm{T}}$. This transformation is determined ${ }^{2}$ by the Muller matrices of the polarizer P_{s} and the phase element F_{s}.

Let us determine S_{s} taking into account that the transformation has the form $S_{\mathrm{s}}=F_{\mathrm{s}} P_{\mathrm{s}} S_{0}$
$S_{\mathrm{s}}=\left[I_{\mathrm{s}} Q_{\mathrm{s}} U_{\mathrm{s}} V_{\mathrm{s}}\right]^{\mathrm{T}}=\frac{1}{2}\left(I_{0}+Q_{0} \cos 2 \theta+U_{0} \sin 2 \theta\right) \times$
$\times\left[1, \cos 2 \varphi \cos 2(\varphi-\theta)+\cos \delta_{\mathrm{s}} \sin 2 \varphi \sin 2(\varphi-\theta)\right.$,
$\sin 2 \varphi \cos 2(\varphi-\theta)-\cos \delta_{\mathrm{S}} \cos 2 \varphi \sin 2(\varphi-\theta)$,
$\left.\sin \delta_{\mathrm{s}} \sin 2(\varphi-\theta)\right]^{\mathrm{T}}$,
where θ is the orientation angle of the transmission plane of the polarizer relative to the x axis of the coordinate system of the radiation source and φ is the angle of orientation of the fast axis of the phase element.

In order to determine 16 elements of the scattering phase matrix 16 independent equations are needed, and taking into account that every type of radiation polarization contains 4 Stokes parameters it suffices to generate 4 polarizations for the source. Let us write these equations taking into account Eqs. (1) and (2)
$D S_{\mathrm{s} i}=S_{\mathrm{r} i}, \quad i=1,2,3,4$.

System (3) should to be well-posed, i.e., its solution should to be low-sensitive to the errors or uncertainties in the initial data.

The optimum measuring instrument gives such coefficients to system (3) that their inaccuracy imposes the least effect on the accuracy of its solution, and, simultaneously, the instrument is easy in performance of the control of polarization blocks of the source and the receiver.

Let us introduce the matrix W, whose lines are the parameters of the Stokes vector of the radiation from the source
$W=\left[S_{\mathrm{s} 1} S_{\mathrm{s} 2} S_{\mathrm{s} 3} S_{\mathrm{s} 4}\right]^{\mathrm{T}}$.
Let us group system (3) in four systems, each determining a line D
$W D_{1}=I_{\mathrm{iw}} ; W D_{2}=Q_{\mathrm{iw}} ; \quad W D_{3}=U_{\mathrm{iw}} ; \quad W D_{4}=V_{\mathrm{iw}}$,
where
$D_{1}=\left[D_{1 n}\right]^{\mathrm{T}} ; D_{2}=\left[D_{2 n}\right]^{\mathrm{T}} ; D_{3}=\left[D_{3 n}\right]^{\mathrm{T}} ; D_{4}=\left[D_{4 n}\right]^{\mathrm{T}} ;$ $n=1,2,3,4 ; \quad I_{\mathrm{iw}}=\left[I_{\mathrm{r} i}\right]^{\mathrm{T}} ; \quad Q_{\mathrm{iw}}=\left[Q_{\mathrm{r} i}\right]^{\mathrm{T}} ; \quad U_{\mathrm{iw}}=\left[U_{\mathrm{r} i}\right]^{\mathrm{T}} ;$ $V_{\mathrm{iw}}=\left[V_{\mathrm{r} i}\right]^{\mathrm{T}} ; i=1,2,3,4$. Let ΔW be a disturbance of the matrix W due to the inaccuracy in determining θ, φ, and δ_{s}, and $\Delta I_{\mathrm{r}}, \Delta Q_{\mathrm{r}}, \Delta U_{\mathrm{r}}$, and ΔV_{r} be the errors in determining the Stokes parameters $I_{\mathrm{r}}, Q_{\mathrm{r}}, U_{\mathrm{r}}$, and V_{r}.

Let us consider the system of equations (5) which determines D_{1}. By superposing the measurement errors we obtain a solution of the system
$(W+\Delta W)\left[D_{1 n}^{*}\right]^{\mathrm{T}}=\left[I_{\mathrm{r} i}+\Delta I_{\mathrm{r} i}\right]^{\mathrm{T}}, \quad n, i=1,2,3,4$,
where $D_{1 n}^{*}=D_{1 n}+\Delta D_{1 n}$, and $\Delta D_{1 n}$ are the errors of the solution. The rest disturbances are related by the expression from Ref. 3
$\delta D_{1} \leq \frac{\text { cond } W}{1-\operatorname{cond} W \delta W}\left(\delta W+\delta I_{i w}\right)$,
where cond $W=\frac{1}{n} \sqrt{\operatorname{Tr} W^{*} W} \sqrt{\operatorname{Tr}\left(W^{-1}\right)^{*} W^{-1}} \quad$ is the number of W conditionality, n is the matrix order, W^{*} and $\left(W^{-1}\right)^{*}$ are the transpose and complex conjugate of W and W^{-1} matrices, respectively,
$\delta D_{1}=\left(\sum_{n=1}^{4} \Delta D_{1 n}^{2} / \sum_{n=1}^{4} D_{1 n}^{2}\right)^{1 / 2}$,
$\delta W=\left(\sum_{n=1}^{4} \sum_{n=1}^{4} \Delta W_{m n}^{2} / \sum_{m=1}^{4} \sum_{n=1}^{4} W_{m n}^{2}\right)^{1 / 2}$
$\delta I_{\mathrm{iw}}=\left(\sum_{i=1}^{4} \Delta I_{\mathrm{ri}}^{2} / \sum_{i=1}^{4} I_{\mathrm{ri}}^{2}\right)^{1 / 2}$
are the relative disturbances of D_{1}, W, and I_{iw}, respectively.

It follows from Eq. (6) that relative disturbances δW and δI_{iw} are added linearly, and, therefore, minimum of δD_{1} is provided at the minimum of $\delta W, \delta I_{\mathrm{iw}}$, and cond W. Then one can conclude that the optimum algorithm of measuring D should have minimum cond W and measure $S_{\mathrm{r} i}$ with maximum accuracy.

The values $\delta D_{2}, \delta D_{3}$, and δD_{4}, which are relative disturbances of the vectors formed by the second, third, and fourth lines of D with δW and cond W and the relative disturbances $\delta Q_{\mathrm{iw}}, \delta U_{\mathrm{iw}}$, and δV_{iw}, respectively, are related to each other by expressions analogous to Eq. (7)

The Stokes vector $S=[I Q U V]^{\mathrm{T}}$ of the radiation at the output of the polarization block of the receiver is determined by the formula
$S=\mathrm{P}_{\mathrm{r}} \Phi_{\mathrm{r}} S_{\mathrm{r}}$,
where P_{r} and Φ_{r} are the Muller matrices of the polarizer and the phase element, respectively.

Since the sensitive element records only the intensity of radiation, it suffices to measure its intensity at the output of the polarization block of the receiver at four values of its Muller matrix and to solve the obtained system of equations in order to find four Stokes parameters of the radiation. Taking into account Eq. (8) we obtain that the radiation with the Stokes vector $S_{\mathrm{r} 1}$ for one value of the Muller matrix of the polarization block gives the intensity at the output of the block
$I_{11}=\frac{1}{2}\left[I_{\mathrm{r} 1}+Q_{\mathrm{r} 1}[\cos 2 \alpha \cos 2(\alpha-\beta)+\right.$
$\left.+\cos \delta_{\mathrm{r}} \sin 2 \alpha \sin 2(\alpha-\beta)\right]+U_{\mathrm{r} 1}[\sin 2 \alpha \cos 2(\alpha-\beta)-$
$\left.\left.\left.-\cos \delta_{\mathrm{r}} \cos 2 \alpha \sin 2(\alpha-\beta)\right]\right]-V_{\mathrm{r} 1} \sin \delta_{\mathrm{r}} \sin 2(\alpha-\beta)\right\}$,
where β is the angle of orientation of the transmission plane of the polarizer relative to the x_{1} axis of the receiver coordinate system and α is the angle of orientation of the phase element.

The expressions for the intensities I_{12}, I_{13}, and I_{14} obtained for the rest three values of the Muller matrix of the polarization block of the receiver differ from Eq. (9) by variations of the parameters α, β, and δ_{r}.

Let us write down the system of equations which determine $S_{\mathrm{r} 1}$, in the matrix form
$\frac{1}{2} M\left[I_{\mathrm{r} 1} Q_{\mathrm{r} 1} U_{\mathrm{r} 1} V_{\mathrm{r} 1}\right]^{\mathrm{T}}=\left[I_{11} I_{12} I_{13} I_{14}\right]^{\mathrm{T}}$.
By introducing the matrix K inverse to M, we write down Eq. (10) in the form

$$
\begin{equation*}
\left[I_{\mathrm{r} 1} Q_{\mathrm{r} 1} U_{\mathrm{r} 1} V_{\mathrm{r} 1}\right]^{\mathrm{T}}=2 K\left[I_{11} I_{12} I_{13} I_{14}\right]^{\mathrm{T}} . \tag{11}
\end{equation*}
$$

Taking into account that I_{21}, I_{22}, I_{23}, and I_{24} are the intensities obtained from measurements of $S_{\mathrm{r} 2} ; I_{31}, I_{32}, I_{33}$, and I_{34} from measurements of $S_{\mathrm{r} 3}$; and, I_{41}, I_{42}, I_{43}, and I_{44} from measurements of $S_{\mathrm{r} 4}$, one can write down
$\left[S_{\mathrm{r} i}\right]=2 K\left[I_{i p}\right]^{\mathrm{T}}, p=1,2,3,4$.
Let us introduce the matrix $G=\left[I_{i p}\right], i, p=1,2,3,4$ and taking into account Eqs. (5), (10), (11), and (12), we obtain the lines
$D_{1}=2 W^{-1} \mathrm{G}\left[k_{1 n}\right]^{\mathrm{T}} ; \quad D_{2}=2 W^{-1} \mathrm{G}\left[k_{2 n}\right]^{\mathrm{T}} ;$
$D_{3}=2 W^{-1} \mathrm{G}\left[k_{3 n}\right]^{\mathrm{T}} ; \quad D_{4}=2 W^{-1} \mathrm{G}\left[k_{4 n}\right]^{\mathrm{T}} ;$
$n=1,2,3,4$.
Relative disturbances for system (10) are related as follows:
$\delta S_{\mathrm{r} 1} \leq \frac{\operatorname{cond} M}{1-\operatorname{cond} M \delta M}\left(\delta M+\delta I_{1}\right)$,
where
$\delta M=\left(\sum_{m=1}^{4} \sum_{n=1}^{4} \Delta M_{m n}^{2} / \sum_{m=1}^{4} \sum_{n=1}^{4} M_{m n}^{2}\right)^{1 / 2}$
are the relative disturbances of the matrix M,
$\delta S_{\mathrm{r} 1}=\left[\frac{\Delta I_{\mathrm{r} 1}^{2}+\Delta Q_{\mathrm{r} 1}^{2}+\Delta U_{\mathrm{r} 1}^{2}+\Delta V_{\mathrm{r} 1}^{2}}{I_{\mathrm{r} 1}^{2}+Q_{\mathrm{r} 1}^{2}+U_{\mathrm{r} 1}^{2}+V_{\mathrm{r} 1}^{2}}\right]^{1 / 2}$,
are the relative disturbance of $S_{n 1}$, and
$\delta I_{1}=\left(\sum_{p=1}^{4} I_{1 p}^{2} / \sum_{p=1}^{4} I_{1 p}^{2}\right)^{1 / 2}$
is the relative disturbance of the measured intensities caused by the errors of measurement $\Delta I_{1 p}$.

It follows from Eq. (14) that relative disturbances δM and δI_{1} are added linearly, and, therefore, the minimum of $\delta S_{\mathrm{r} 1}$ is provided when δM and δI_{1} reach their minima. Then one can conclude that when measuring $S_{\mathrm{r} 1}$ it is necessary to reach minimum cond M and to measure I_{11}, I_{12}, I_{13}, and I_{14} with maximum accuracy. It is evident that at more accurately measured vectors $S_{\mathrm{r} i}$, the less are $\delta I_{\mathrm{iw}}, \delta Q_{\mathrm{iw}}, \delta_{\mathrm{iw}}$, and δV_{iw}. M differs from W by the opposite sign of elements in the fourth column. One can show that cond $M=$ cond W, therefore let us analyze W.

Thus the matrix W is always degenerated if only the angle of the polarizer orientation varies, or if the angles θ and φ vary simultaneously at $\varphi-\theta=$ const. If the parameter δ_{r} changes, it is necessary to change at least once the orientation of the phase element or of the polarizer in order to make W nondegenerate. On the other hand the matrix W is always nondegenerate if the orientation of the phase element is changed, therefore the control of the orientation of the phase element is most convenient. The numerical analysis ${ }^{4}$ has shown that cond M is minimum at some orientation of the phase
element relative to the polarizer for $\delta_{\mathrm{r}}=130^{\circ}$. My calculation by Eq. (7) for $\delta_{r}=\lambda / 4, \quad \theta=90^{\circ}, \quad \varphi_{1}=45^{\circ}, \quad \varphi_{2}=75^{\circ}$, $\varphi_{3}=105^{\circ}$, and $\varphi_{4}=135^{\circ}$ yielded cond $M=1.53$.

For comparison let us present the conditionality numbers for the other techniques of measuring the Stokes parameters. The technique ${ }^{1}$ requiring four measurements of the intensity, when one measurement is carried out without the phase element (this makes the technical realization more difficult), has the conditionality number 1.3. The technique ${ }^{5}$ requiring six measurements, when one measurement is also carried out without the phase element, gives the conditionality number 1.06 .

REFERENCES

1. G.V. Rosenberg, ed., The Searchlight Beam in the Atmosphere (Academy of Sciences Press, Moscow, 1960), pp. 146-174.
2. A. Gerrard and J.H. Burch, Introduction into Matrix Methods in Optics (Willey, New York, 1975).
3. V.V. Voevodin and Yu.A. Kuznetsov, Matrices and Calculations (Nauka, Moscow, 1984).
4. V.V. Mar'enko and T.V. Molebnaya, Opt. Mekh. Prom. [Sov. J. Opt. Technol.], No. 7, 68-71 (1990).
5. M. Born and E. Wolf, Principles of Optics, 4th ed., (Pergamon Press, Oxford, 1970).
