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An optimization of a device for measuring 16 components of the scattering phase 
matrix is proposed. The optimized instrument allows the measurements of the 
scattering phase matrix to be performed with the maximum possible accuracy with 
errors in the initial data. The device design provides a very simple control of the 
polarization components. 

 

The scattering phase matrix D relates the Stokes 
vector of the radiation from a source S

s
 = [I

s 
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s
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s
]T and 

the Stokes vector of the scattered radiation 
S

r
 = [I

r 
Q

r
U

r
V

r
]T coming to the receiver by the relation 

 

S
r
 = DS

s
 . (1) 

 

In the general case when the medium is anisotropic, it is 
impossible to indicate in advance the equal and zero 
elements, and so it is necessary to determine all the 16 
elements of the matrix D. 

Importance of the problem in measuring D have been 
noted in Ref. 1, and its urgency is kept up to date due to 
the methodological and technical difficulties. 

A well–known block diagram of the device for 
measuring D involves an optical generator the radiation 
from which passes successively the polarizer and the phase 
element, which shifts the phase of the perpendicular 
components by the angle δ

s
. Light scattered by the medium 

comes to the receiver, in which it successively passes 
through the phase element, which shifts the phase of the 
perpendicular components by the angle δr, the polarizer, and 

the interference filter. The polarization block of the 
radiation source transforms the Stokes vector of the output 
radiation of the optical generator S

0
 = [I

0
Q

0
U

0
V

0
]T. This 

transformation is determined2 by the Muller matrices of the 
polarizer P

s
 and the phase element F

s
. 

Let us determine S
s
 taking into account that the 

transformation has the form S
s
 = Fs 

P
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S
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 cos 2θ + U

0
 sin 2θ) × 

 

× [1, cos 2ϕ cos 2(ϕ – θ) + cos δ
s
 sin 2ϕ sin 2(ϕ – θ),  

 

sin 2ϕ cos 2(ϕ – θ) – cos δ
s
 cos 2ϕ sin 2(ϕ – θ),  

 

sin δ
s
 sin 2(ϕ – θ)]T , (2) 

 

where θ is the orientation angle of the transmission plane of 
the polarizer relative to the x axis of the coordinate system 
of the radiation source and ϕ is the angle of orientation of 
the fast axis of the phase element. 

In order to determine 16 elements of the scattering 
phase matrix 16 independent equations are needed, and 
taking into account that every type of radiation polarization 
contains 4 Stokes parameters it suffices to generate 4 
polarizations for the source. Let us write these equations 
taking into account Eqs. (1) and (2) 
 

DS
si = S

ri ,  i = 1, 2, 3, 4 . (3) 
 

System (3) should to be well–posed, i.e., its solution 
should to be low–sensitive to the errors or uncertainties in the 
initial data. 

The optimum measuring instrument gives such 
coefficients to system (3) that their inaccuracy imposes the 
least effect on the accuracy of its solution, and, 
simultaneously, the instrument is easy in performance of the 
control of polarization blocks of the source and the receiver. 

Let us introduce the matrix W, whose lines are the 
parameters of the Stokes vector of the radiation from the 
source 
 

W = [S
s1
 S

s2
 S

s3
 S

s4
]T. (4) 

 

Let us group system (3) in four systems, each determining  
a line D 
 

WD
1
 = I

iw
 ; WD

2
 = Q

iw
 ; WD

3
 = U

iw
 ; WD

4
 = V

iw
 , (5) 

 

where 
 

D
1
 = [D

1n]T ; D
2
 = [D

2n]T ; D
3
 = [D

3n]T ; D
4
 = [D

4n]T ; 

n = 1, 2, 3, 4; I
iw

 = [I
ri]

T ; Q
iw

 = [Q
ri]

T ; U
iw

 = [U
ri]

T ; 

V
iw

 = [V
ri]

T ; i = 1, 2, 3, 4. Let ΔW be a disturbance of 

the matrix W due to the inaccuracy in determining 
θ, ϕ, and δ

s
, and ΔI

r
, ΔQ

r
, ΔU

r
, and ΔV

r
 be the errors in 

determining the Stokes parameters I
r
, Q

r
, U

r
, and V

r
. 

Let us consider the system of equations (5) which 
determines D

1
. By superposing the measurement errors we 

obtain a solution of the system 
 

(W + ΔW)[D *
1n]

T = [I
ri + ΔI

ri]
T, n, i = 1, 2, 3, 4 , (6) 

 

where D *
1n = D

1n + ΔD
1n, and ΔD

1n are the errors of the 

solution. The rest disturbances are related by the expression 
from Ref. 3 
 

δD
1
 ≤ 

cond W
1 – cond WδW

 (δW + δI
iw

) , (7) 

 

where cond W = 
1
n TrW *W  Tr(W –1)* W –1 is the 

number of W conditionality, n is the matrix order, W * and 
(W 

–1)* are the transpose and complex conjugate of W and 
W 

–1 matrices, respectively, 
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are the relative disturbances of D

1
, W, and I

iw 
, 

respectively. 
It follows from Eq. (6) that relative disturbances δW 

and δI
iw

 are added linearly, and, therefore, minimum of δD
1
 

is provided at the minimum of δW, δI
iw

, and cond W. Then 

one can conclude that the optimum algorithm of measuring 
D should have minimum cond W and measure S

ri with 

maximum accuracy. 
The values δD

2
, δD

3
, and δD

4
, which are relative 

disturbances of the vectors formed by the second, third, and 
fourth lines of D with δW and cond W and the relative 
disturbances δQ

iw
, δU

iw
, and δV

iw
, respectively, are related 

to each other by expressions analogous to Eq. (7). 
The Stokes vector S = [IQUV]T of the radiation at 

the output of the polarization block of the receiver is 
determined by the formula 
 
S = P

r
Φ

r 
S

r
 , (8) 

 
where P

r
 and Φ

r
 are the Muller matrices of the polarizer and 

the phase element, respectively. 
Since the sensitive element records only the intensity 

of radiation, it suffices to measure its intensity at the 
output of the polarization block of the receiver at four 
values of its Muller matrix and to solve the obtained system 
of equations in order to find four Stokes parameters of the 
radiation. Taking into account Eq. (8) we obtain that the 
radiation with the Stokes vector S

r1
 for one value of the 

Muller matrix of the polarization block gives the intensity 
at the output of the block  

 

I
11

 = 
1
2 [I

r1
 + Q

r1
 [cos 2α cos 2(α – β) + 

 
+ cos δ

r
 sin 2α sin 2(α – β)] + U

r1
[sin 2α cos 2(α – β) – 

 
– cos δ

r
 cos 2α sin 2(α – β)]] – V

r1
 sin δ

r
 sin 2(α – β)} , (9) 

 

where β is the angle of orientation of the transmission plane 
of the polarizer relative to the x

1
 axis of the receiver 

coordinate system and α is the angle of orientation of the 
phase element. 

The expressions for the intensities I
12

, I
13

, and I
14

 

obtained for the rest three values of the Muller matrix of 
the polarization block of the receiver differ from Eq. (9) by 
variations of the parameters α, β, and δr. 

Let us write down the system of equations which 
determine S

r1
, in the matrix form  
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By introducing the matrix K inverse to M, we write 
down Eq. (10) in the form 
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Taking into account that I
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, I
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, I
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, and I
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 are the 

intensities obtained from measurements of S
r2
; I

31
, I
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, I
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and I
34

 from measurements of S
r3
; and, I

41
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, I
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, and I

44
 

from measurements of S
r4
, one can write down 

 
[S

ri] = 2K [Iip]
T , p = 1, 2, 3, 4 . (12) 

 
Let us introduce the matrix G = [Iip], i, p = 1, 2, 3, 4 and 

taking into account Eqs. (5), (10), (11), and (12), we 
obtain the lines 
 
D
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2
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–1G [k
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D
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n = 1, 2, 3, 4 . (13) 
 
Relative disturbances for system (10) are related as follows: 
 

δS
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 (δM + δI
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are the relative disturbances of the matrix M,  
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is the relative disturbance of the measured intensities caused 
by the errors of measurement ΔI

1p. 

It follows from Eq. (14) that relative disturbances δM 
and δI

1
 are added linearly, and, therefore, the minimum of 

δS
r1
 is provided when δM and δI

1
 reach their minima. Then 

one can conclude that when measuring S
r1
 it is necessary to 

reach minimum cond M and to measure I
11

, I
12

, I
13

, and I
14

 

with maximum accuracy. It is evident that at more accurately 
measured vectors S

ri, the less are δI
iw

, δQ
iw

, δ
iw

, and δV
iw

. M 

differs from W by the opposite sign of elements in the fourth 
column. One can show that cond M = cond W, therefore let 
us analyze W. 

Thus the matrix W is always degenerated if only the 
angle of the polarizer orientation varies, or if the angles θ 
and ϕ vary simultaneously at ϕ – θ = const. If the 
parameter δ

r
 changes, it is necessary to change at least 

once the orientation of the phase element or of the 
polarizer in order to make W nondegenerate. On the 
other hand the matrix W is always nondegenerate if the 
orientation of the phase element is changed, therefore the 
control of the orientation of the phase element is most 
convenient. The numerical analysis4 has shown that 
cond M is minimum at some orientation of the phase  
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element relative to the polarizer for δ
r
 = 130°. My calculation 

by Eq. (7) for δ
r
 = λ/4, θ = 90°, ϕ

1
 = 45°, ϕ

2
 = 75°, 

ϕ
3
 = 105°, and ϕ

4
 = 135° yielded cond M = 1.53. 

For comparison let us present the conditionality numbers 
for the other techniques of measuring the Stokes parameters. 
The technique1 requiring four measurements of the intensity, 
when one measurement is carried out without the phase 
element (this makes the technical realization more difficult), 
has the conditionality number 1.3. The technique5 requiring six 
measurements, when one measurement is also carried out 
without the phase element, gives the conditionality number 
1.06. 
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