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A theoretical study of oscillations occurring in a pulse of a spontaneous emission 
initiated in a regime of linear absorption of a smooth bell– shaped radiation pulse 
exciting a resonance atomic transition is presented. The regions of the oscillation 
existence are found numerically for different durations of the excitation pulse and for 
different detunings of its radiation frequency from resonance with the atomic 
transition. An essential dependence of the size and shape of the regions on the rate of 
an induced dipole moment of an atom and on the ratio of durations of leading and 
trailing edges of the excitation pulse is revealed. 

 
Necessity of investigating quantum systems dynamics 

under the action of pulsed laser radiation is caused by a 
wide range of its applications. A capability of creating 
essential population of atoms and molecules at certain 
excited levels at a required time makes a physical basis for 
such applications as laser photo– and thermochemistry,1,2 
selective photodissociation of molecules and photoionization 
of atoms,1–4 and many others. This is achieved by using 
short and high–power resonance laser emission pulses. 
Under certain conditions the use of such pulses can also 
cause essential coherence effects connected with excitation 
of polarization of resonance transitions during times that are 
shorter than the corresponding relaxation times. 

In addition to the influence on the population dynamics 
observed, for example, at interference of different channels of 
transitions to a certain level6 the coherence phenomena 
themselves are of great importance. As an example it will 
suffice to mention the photon echo,2,7,8 self–induced 
transparency,2 and Rabi oscillations.7,9,10 Not aiming at 
reviewing a wide number of papers concerning these 
phenomena, we should like to note that the above–mentioned 
coherent and populational phenomena are usually observed at 
light intensity close to or exceeding the saturation level. 

Among the effects of such a type the effects of 
intraatomic coherence at intensities significantly less than the 
saturation level are much less studied. Oscillations of a pulsed 
spontaneous emission (or, in other words, of population of the 
upper level combining with the field) occurring under 
excitation of a resonance transition by a smooth pulse with the 
optical frequency slightly shifted off the resonance frequency 
of the transition are one of such effects. 

In the simplest case these oscillations can be observed in 
two–level atoms. Existence of such oscillations different from 
the Rabi ones was mentioned in Ref. 10, in which the solution 
of the problem of a two–level system under the action of 
exponentially increasing resonance radiation with the 
frequency shifted off the transition frequency was discussed. 
An exact solution of the problem for exponentially decreasing 
field11 also contains these oscillations along with the 
population beats caused by the field intensity, however, they 
were not even mentioned in Ref. 11. 

In this paper we present an investigation of these 
oscillations occurring in a pulse–response of spontaneous 
emission of a conservative two–level system under linear 
absorption of a radiation pulse with a shape close to that of 
real laser pulses as functions of the exciting pulse duration,  

its frequency shift off the transition one, and the ratio of 
the system relaxation rates to the slopes of the leading and 
trailing edges of a pulse. 

The analysis is made using standard equations for 
density matrix r̂ of a conservative two–level system in the 
model of relaxation constants and rotary wave 
approximation (RWA) as follows: 
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Here, ρ

0
 and ρ

1
 are the populations of the lower (0) and upper 

(1) levels, ρ
10

 is the off– diagonal matrix element of the 

density describing the field– induced polarization of the 
system, ε(t) is the time–dependent envelope of electric field of 
the optical wave, Ω is the difference between the carrier 
frequency of light ω from the transition frequency ω

10
, d

10
 is 

the matrix element of the transition 0 → 1 dipole moment, and 
γ
1
 and γ are the relaxation constants of the upper level and the 

polarization, respectively. 
It is convenient to discuss a physical origin of the 

considered oscillations using a rectangular pulse 
V(t) = θ(t) θ(τ – t)V, where θ(t) is the step–wise function. In 
this case the characteristic equation for system (1) for 0 < t < τ 
takes the form  

 
(λ + γ

1
)(λ + γ)2 + 4V 

2(λ + γ) + Ω 
2(λ + γ

1
) = 0 . (2) 

 

The cubic equation (2) relative to index λ is reduced to the 
quadratic one when Ω = 0 (exact resonance), V = 0 (zero 
field), and γ = γ

1
 (equal relaxation constants). When solving 

Eqs. (1) and other similar systems of equations with a 
time– dependent interaction term V(t) the exact resonance 
is considered most frequently what allows one to proceed far  
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towards analytical solution of the problem.10 In this case the 
sought– for response undergoes Rabi oscillations with the 
frequency determined by the amplitude V while the 
oscillations we are interested in are absent at zero field. In the 
case of equal relaxation constants the solution of Eq. (1) 
involves temporal exponential functions with the exponents 
 

λ
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 , λ

2,3
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1
 ± i Ω

R
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R
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2
 + 4V 

2 , (3) 

 
where the absolute value of the imaginary parts of the 
second and third roots Ω

R
 is the classical Rabi frequency 

depending on the frequency detuning. It is obvious that in 
this case Ω and V enter into Ω

R
 symmetrically and, hence, 

equally determine the solution oscillations. 
Thus, the mechanism forming the oscillations caused 

by both tuning the exciting field off the resonance and 
high– power radiation is one and the same and it is 
formally explained by precession7 of an atom pseudo– spin 
(R′/2, R′′/2, ρ

0
 – ρ

1
) around the vector of "rotational 

momentum" (– 2V, 0, Ω) with the frequency Ω
R
. At the 

same time, one can easily see from Eqs. (1) the difference in 
physical nature of oscillations of these two types. Really, 
oscillations at Ω = 0 appear due to periodic migration of the 
population from level 0 to 1 with the period comparable 
with the relaxation times under saturation of the transition. 
The beats at V = 0 is caused by a relation (interference) 
between absorption and dispersion components of induced 
dipole momentum, i.e., only by intraatomic coherence with 
the beats period defined by the difference between the 
oscillation frequency of the system ω

10
 and the frequency of 

ω of an inducing force. 
As follows from Eq. (3) the condition for observing 

the oscillations occurring in the regime of linear absorption, 
i.e., in the case of zero fields, is  
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A solution of Eqs. (1) as V → 0 for an arbitrary 

function V(t) can be given in the form  
 

ρ
1
(t) = e

– γ1t
 ⌡⌠
0

t

 
 dt

1
e
(γ1 – γ)

G(t
1
) 

⌡⌠
0

t
1

 

 dt
2
 e
γt2

 G(t
2
) cos Ω(t

1
 – t

2
),(5) 

 

G(t) = V(t) 2. 
 

Further analysis will be carried out using a popular pulse 
shape G(t)  

 

G(t) ∼ e– αt – e– βt , β > α > 0 . (6) 
 
The maximum of G(t) in relation (6) is at t = t

max
 , 

t
max

 = (ln β – ln α)/(β – α) , 

 

G(t
max

) = r/(1 + r)1+1/r, r = β/α – 1 , (7) 

 
and FWHM is approximated with the error 0.6% by the 
expression  
 

τ
1
 = 

1
α
 ln [2 + 7 α/β + 2.5 (α/β)3] . (8) 

 
As r → ∞ in relation (6) G(t) is reduced to exponentially 
decreasing pulse exp(– αt) considered in Ref. 11. As 
β → α (r → 0) two– exponential pulse (6) is reduced to an 
exponential by power law t exp(– αt) with smoother leading 
edge of a pulse. Experimentally recorded envelope of the 
intensity ∼ G

2(t) has the same value of t
max

 and FWHM τ
2
 

approximated with the error of 1.6% by the formula  
 

τ
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An analytical solution ρ

1
(t) for pulse (6) has the form 
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As can be seen from Eq. (9) the pulse– response of 

induced fluorescence ∼ ρ
1
(t) has a smooth (the first braces) 

and the oscillatory parts. The latter decays with rate 
determined by the polarization relaxation constant γ and 
excitation pulse duration. Most obviously these components 
of the response can be separated out as r → ∞, i.e., for an 
exponentially decreasing excitation pulse. In this case, in 
the absence of collisions (γ = γ1

/2) 

 

ρ
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and the smooth part of a fluorescence pulse is proportional 
to G2(t) in relation (6), where β = γ

1
/2. As α → γ

1
/2 the 

amplitude of the smooth part decreases, approximately as 
∼ (α – 2γ

1
)2 down to zero, what results in a maximum 

contrast of oscillations. 
The examples of oscillations in spontaneous emission 

pulse calculated according to formula (9) for some values of 
the parameters τ

2
, γ, γ

1
, r are shown in Fig. 1. As can be seen 

from this figure the oscillation contrast defined as the ratio of 
the difference between half– sum of values of ρ

1
(t) at two 

adjacent maxima and the value of ρ
1
 at the minimum between 

them to the absolute maximum of population can be 
sufficiently large in some cases. This means that the 
oscillations can be isolated against a sufficiently high 
background of the experimental noise. 
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FIG. 1. The shape of a pulse– response of resonance 
fluorescence having oscillations in a linear regime of 
absorption caused by the carrier frequency shift of the 
exciting pulse off the transition frequency (solid lines): 

a) τ
2
γ
1
 = 1.2, Ω/γ

1
 = 10, γ/γ

1
 = 0.5, and r = 0.1; 

b) τ
2
γ
1
 = 0.6, Ω/γ

1
 = 12, γ/γ

1
 = 2, and r = 0.1; 

c) τ
2
γ
1
 = 1.3, Ω/γ

1
 = 24, γ/γ

1
 = 2, and r = 0.1; and, 

d) τ
2
γ
1
 = 2.2, Ω/γ

1
 = 2.5, γ/γ

1
 = 0.5, and r = 9. 

The exciting pulse G2(t) in Eq. (6) is shown by dashed lines. 
 
From Eqs. (9) and (10), as well as from the general 

considerations, it follows that the condition necessary for 
observing oscillations is long enough pulse duration τ

2
 and a 

large time of the polarization decay γ– 1 compared to the 
period of oscillations τ

osc
 = 2π/Ω 

 
τ
osc

 d min (τ
2
, γ– 1) . (11) 

 
Relation (11) obviously limits the region of existence of 

oscillations in a pulse– response from the short durations of 
pulses. From the side of large τ

2
 values there also exists a 

limitation on the oscillations, since in this case the oscillations 
with maximum amplitude are observed on a limited interval 
0 < t < 1/γ and, as a result, they are suppressed due to the 
steepness of a pulse front and because of smallness of the 

response amplitude ∼t 2 at t � τ
2
 (see Fig. 1c). Thus, the 

domain of values τ
2
, in which the oscillations are pronounced, 

is bounded from the side of large and small times and is 
determined by the parameters γ, γ

1
, and r. 

More complete information about the existence of the 
domain of essential oscillations depending on the pulse 
duration τ

2
 and the frequency shift Ω gives Fig. 2, which 

shows calculated isolines of equal numbers of oscillations in 
a response with the contrast exceeding 5%. The number of 
oscillations equal to the number of local minima of ρ

1
(t) 

between the maxima which satisfy the condition of certain 
contrast is shown by the figures near lines.  

The width of a domain of the oscillation existence in τ
2
 

units is proportional to the polarization relaxation time 1/γ 
(compare Figs. 2a and 2b). In both cases at a fixed γ the 
width increases at a steeper leading and smoother and 
longer trailing edges of a pulse. A periodical saw– tooth 
structure of the isolines at large τ

2
 is explained by a 

successive crawl of the oscillations over a maximum of the 
smooth part of the pulse and by suppression of them at the 
leading edge of the pulse. Smooth and regular isolines at 
small τ

2
 correspond to oscillations at the trailing edge of the 

pulse when the first oscillation maximum occurs at t larger 
than that of the maximum of the smooth part of the 
response pulse. Crooks of the curves in Fig. 2a in the region 
of mean values of τ

2
 are caused by the dependence of the 

oscillation phase on Ω and the pulse– response shape near 
its maximum. 

 

 
 

 
 

FIG. 2. The domains of existence of oscillations in 
dependence on the exciting pulse duration τ

2
 and on the 

frequency detuning Ω for some values of γ and r: 
a) γ/γ

1
 = 0.5, r = 0.1; b) γ/γ

1
 = 2 , r = 0.1; and, c) γ/γ

1
 = 2 

and r = 9. 
 

Calculations for oscillations with higher contrast made 
in similar way as the calculations of isolines shown in  
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Fig. 2, have demonstrated that, on the whole, the view and 
behavior of isolines remain the same and the width of the 
existence domain (in τ

2
 units) decreases only slightly with 

increasing contrast. Rareness of isolines along the Ω axis 
is more noticeable, especially, at small τ

2
. Thus, for 

example, a change of the contrast from 5 to 50% for the 
case shown in Fig. 2a causes a decrease of a number of 
oscillations taken into account from 9 to 6 at Ω = 10γ

1
 

and τ
2
 ∼ 2/γ

1
. At τ

2
 > 3/γ

1
 the changes are much less. 

In conclusion it should be noted that essential 
dependence of specific configuration of the domain of the 
oscillation existence on the ratio of γ/γ

1
, shape, and the 

ratio of the durations of the exciting pulse fronts makes a 
good basis for a very intelligent experimental 
investigation of these characteristics, especially, at low 
gas pressures when the values of γ are smallest. 
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