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An adaptive telescope with a Hartmann sensor of the wave–front distortions and 
a phase corrector in the form of a matrix of square–shaped segments is considered. 
The efficiencies of two algorithms of the corrector control are compared. One of the 
proposed algorithms is very simple and can be performed without a processor, i.e., 
with an analog device and hence can provide fast response at a low cost of a corrector 
control unit. The other algorithm is based on a model representation of the wave–front 
distortions and uses the least–squares method for seeking for coefficients at the 
aberration polynomials. The latter algorithm needs for a processor, but provides a 
diffraction–limited resolution at a sufficient level of the reference signal. The 
function of the point image diffusion has been calculated for both methods. The 
averaging was done over random samples of the wave–front distortions generated on a 
computer. 

 
1. INTRODUCTION 

 
The problem in reconstructing of the shape of optical 

radiation front with the use of a phase difference was 
investigated in a number of papers.12–23 The authors of 
these papers have studied the influence of uncorrelated 
additive noises (for example, photon noise) interfering the 
estimations of phase differences or wave–front gradients, 
and the restoration of a phase at a discrete set of points. 
However, all these works excluding Ref. 22 neglect a 
specific character of an instrumental error introduced by 
the Hartmann wave–front sensor into the estimate of the 
phase difference. In Ref. 22 the Hartmann sensor is 
considered as a device measuring the displacements of the 
wave–front fragments of an optical beam focused by 
subapertures. However, in this work a particular case of 
the sensor design is considered, in which the 
displacements are estimated from the differences of 
energies incident upon the upper (lower) and left (right) 
halves of four square–shaped photodetectors positioned in 
the focal plane of the sensor, while the aberrations of the 
wave front on the subaperture are neglected.  

In this paper we calculate numerically the point 
image diffusion function (PIDF) of an adaptive telescope 
implementing the program which simulates its basic 
components such as the wave–front sensor (of the 
Hartmann–type sensor) and a segmented corrector 
composed of a matrix of the square–shaped elements. 
Distribution of the intensity over the focal plane of each 
subaperture was calculated in the paraxial approximation 
thus allowing for the diffraction and aberration of the 
wave front. The photon noise was simulated with the help 
of a sensor generating a sequence of random numbers 
distributed according to the Poisson law. Then the 
program calculated the displacements of the center of 
gravity of the intensity distribution over the focal plane 
of each subaperture with respect to its diffraction position 
and determined the tilts and the displacements for each 
corrector element with the help of the algorithms  

mentioned above. The corrected wave front was used for 
calculating a short–exposure PIDF, which was averaged 
over the random samples of turbulent distortions.  

Such an approach allows one to simultaneously 
account for different factors introducing the errors not 
only into the measurements but also into the correction of 
distortions of the wave front as well as to obtain the final 
result in terms of the PIDF and, if necessary, in terms of 
the optical transfer function. The sources of measurement 
errors are, in particular, the aberrations of a wave front 
on the sensor subapertures caused by the atmospheric 
turbulence of small scales. Such errors no longer can be 
regarded as uncorrelated as is in the case of the photon 
noise. In addition, with increase of the number of 
subapertures the aberrations of the wave front on an 
individual subaperture decrease and the spatial resolution 
of the sensor becomes higher, whereas the uncertainties 
due to the quantum intensity fluctuations increase. Thus, 
the efficiency of a correction depends in a complicated 
way on the number of subapertures, strength of turbulent 
disturbances, and signal intensity.  

 
2. TECHNIQUE FOR CALCULATING THE 

TURBULENT PIDF 
 

Random turbulent distortions of the wave front were 
simulated using the approximation of a phase screen 
placed in the aperture plane of a telescope. A two–
dimensional spectral density of the phase fluctuations of a 
plane wave for the case of light propagation in the 
atmosphere, being described in the approximation of 
geometric optics, has the form1  
 

FS(k) = 0.489r0
–5/3(k2 + k0

2)–11/6 , (1) 

 
where  
 

r0 = (0.423 k2

⌡⌠
Cn

2(h) dh)–3/5 (2) 
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is Fried's coherence parameter,4,5 k = 2π/λ is the wave 
number, C2

n(h) is the profile of the structure constant of the 

refractive index fluctuations along the propagation path, 
and κ0 = 2π/L0, L0 is the outer scale of the turbulence. 

This latter parameter was taken to be equal to 100 m. The 
inner scale of the turbulence does not enter explicitly into 
the spectrum (Eq. (1)), however, in the numerical 
simulation of turbulent distortions the scales smaller than 
the grid step are lost and therefore the inner scale of the 
turbulence is taken to be equal to the grid's step. In our 
calculations the grid's step was about 2 cm.  

Distortions of the wave front S(x, y), complex 
amplitude U(x, y), and the intensity I(x, y) of the optical 
wave were represented in the form of two–dimensional 
arrays S(l, m), U(l, m), and I(l, m), l, m = 1, ..., N set on 
the X and Y coordinates over square grid with the step Δx 
and size N which covers the spatial region with the 
extension G = N⋅Δx along each of the coordinates. The 
random wave front S(l, m) has been generated by two 
methods.  

The first method based on the fast Fourier transform 
(FFT)8,9,10 was used for simulating the random spatial 
fluctuations with the scales smaller than the region under 
investigation but larger than the grid step Δx. In other 
words, this method was used for generating the random 
wave front with the spectral density  
 

F1(x) = 

⎩⎪
⎨
⎪⎧

 

0, 0 < k < kmin,

FS(k), kmin < k < kmax,

0, kmax < k < ∞,

 (3) 

 

where κmin = 2π/G, κmax = π/Δx. This restriction is associated 

with the fundamental property of the discrete Fourier 
transform, owing to which the frequency range is limited by 
the band [κmin, κmax]. For the spectrum FS of the type given 

by Eq. (1) only the loss of large–scale fluctuations is of 
significance (provided that the diameter of the aperture is 
much larger than the inner scale of the turbulence that is true 
for the problem under study). In order to take into account 
the large–scale fluctuations we supplement the wave front 
S1(l, m), obtained using the FFT method, with the aberrations 

calculated by summing the first NP Zernike polynomials2,6,7  
 

S2(l, m) = ∑
q=2

NP

 
 aq Zq [(l – l0)Δx, (m – m0)Δy] (4) 

 

with the coefficients aq which were generated as random 

numbers distributed normally with the zero mean and with 
the variances being equal to  
 

σn
2 = 8π(n + 1) ⌡⌠

 
 k dk F2(k) 

J2
n+1(kR)

(kR)2  , (5) 

 

where n is the radial power of the polynomial, R is the 
radius of a circle in which the polynomials Zq(x, y) are 

orthogonal, l0 and m0 are the coordinates of center of the 

circle, and F2 is defined as  
 

F2(k) = 
⎩
⎨
⎧

 

FS(k), k < kmin

0, k > kmin

. (6) 

 

The number of polynomials NP in sum (4) was taken to be 

15 that corresponds to the polynomials of up to the fourth 
power.  

Thus, the random phase screen is represented as the 
sum of two components  
 
S(l, m) = S1(l, m) + S2(l, m) (7) 

 
in which the component S2 was calculated as sum (4) with 

the random coefficients aq, while S1 was obtained as a 

result of calculation of the two–dimensional FFT of the 
array A(l, m), l, m = 1, ..., N which represented a random 
two–dimensional spectral amplitude set on the coordinates 
grid with the step Δκ = 2π/G. The array A(l, m) was 
generated as the matrix of independent random complex 
numbers obeying the following conditions:  
 

1) ⏐A(l, m)⏐2= F1((l – 1) Δκ, (m – 1) Δκ) Δκ, l = 1, NN, 

m = 1, N ; 

2) arg (A(l, m))= 2π RND, l = 1, NN, m = 1, N ; 

3) A(l, m) = A*(N – 1, N – m) for the rest of l and m.  
 
Here NN is the number corresponding to the Nyquist 

frequency while the RND is the random number distributed 
uniformly within the interval [0, 1]. The first of these 
conditions ensures the correspondence of the spatial 
spectrum of each realization A(l, m) to a preset two–
dimensional spectral density, the second one ensures the 
randomness of realizations of the wave front distortions, and 
the third one is required for obtaining a purely real array 
S(l, m) after making FFT calculations.  

We calculated the distribution of a complex amplitude 
according to the obtained random realization of the wave 
front and then we found the intensity distribution over the 
focal plane of a converging lens. The lens aperture function 
was set to be equal to unity inside the square with the side 
D = 1 m and to be equal to zero outside it. The radius R 
for calculating the polynomials Zq was taken to be equal to 

D/21/2. The field in the focus was calculated either as the 
Fourier transform of the initial complex amplitude 
(Fraunhofer diffraction) or in the paraxial approximation 
(Fresnel diffraction). In the latter case it is necessary to 
perform the FFT twice (direct and inverse transforms) and 
to multiply the spectrum of the focused field by the 
filtering function3 corresponding to passing the focal length 
f after the first FFT. This method increases the amount of 
calculations by a factor of 2–3 but allows one to vary the 
focal length and to obtain the intensity distribution in the 
focal plane with an arbitrary angular step. The second 
method was used for calculating a corrected PIDF.  

 
3. MODELING THE SENSOR AND THE CORRECTOR  

OF THE WAVE FRONT 
 

In this paper we consider a segmented corrector of the 
wave front in the form of a matrix of square–shaped 
elements with the size d = D/N1/2

C  (NC is the number of 

corrector elements), being independently controlled along 
three degrees of freedom, that is tilts with respect to the X 
and Y axes and displacements along the Z axis. We assume 
that the corrector and aperture of the wave–front sensor are 
in the planes adjoint with the telescope aperture plane and 
hence the distortions of the wave front can be considered to 
be identical to those in the aperture plane.  
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The wave–front sensor is a matrix of converging lenses 
of the same shape, and size as the matrix of the corrector 
elements. In the focal plane of each sensor subaperture a 
distorted image of a monochromatic point source is formed. 
For each subaperture we calculated the intensity distribution 
over this image by the methods that we had used for 
calculating the PIDF of the telescope and then we obtained 
the intensity distribution in the plane of detectors in the form 
of a two–dimensional array Ik(l, m), l, m = 1, ..., Nd, k = 1, 

NS, where Nd is the size of the calculation grid used for 

calculating the intensity in the focal plane of a subaperture, 
NS = NC is the number of subapertures being equal to the 

number of the corrector elements. Then we calculated 
deviations of the center of gravity of each image from its 
diffraction position  
 

rk = Δx 
⎝
⎛

⎠
⎞∑

l, m

 Ik(l, m) (ex(l – l0) + ey(m – m0))

⎝
⎛

⎠
⎞∑

l, m

 Ik(l, m)
 , (8) 

 

where l0 and m0 are the coordinates of the center of gravity 

of the diffraction image, ex and ey are the unit vectors of 

the directions along the X and Y axes, respectively, Δx is 
the grid step in the plane of detectors, and k = 1, ..., NS. 

The estimate of the wave front tilt averaged over the 
subaperture is related to the rk value by the equation  
 

gk = rk/fH , (9) 
 

where fH is the distance between the plane of subapertures 

and that of the photodetectors of the Hartmann sensor.  
For simulating the photon noise we transformed the 

array Ik(l, m) into the array Pk(l, m) according to the 

following rule:  
 

Pk(l, m) = RNDP ⎝
⎛

⎠
⎞Nph/NS* Ik(l, m) / ∑

l, m

 Ik(l, m)  , (10) 

 

where Nph is the statistically mean number of photons passed 

through the sensor aperture during the exposure time, 
RNDP(I) is the random number distributed according to the 
Poisson law with the mean value being equal to I. Then we 
substituted the arrays Pk into formula (8) for Ik and thus 

obtained the noise estimates of the tilts gk. Thus, each element 

of the array Pk represented a random number of photons 

absorbed by the photodetector element with the size Δx by Δy 
centered at the point (l, m).  

 
4. THE MODAL METHOD OF WAVE FRONT 

RECONSTRUCTION 
 

The modal method of reconstructing wave fronts, we use 
in our study, is analogous to that studied in Refs. 16 and 19, 
where a detailed analysis of it is given. For this reason we give 
here only a brief formulation of the mathematical aspects of 
the problem. Thus, we assume that the wave front S(x, y) can 
be represented sufficiently accurately as a finite sum of 
Zernike polynomials  
 

S(l, m) = ∑
q=z

Nm

 
 aq Zq ((l – l0)Δx, (m – m0)Δy] , (11) 

 

where Nm is the number of polynomials used in the modal 

representation. The problem is to find the vector of the 
coefficients {aq} that minimizes the functional  

 

F = ∑
k=1

NS

 
 

⎝
⎜
⎛

⎠
⎟
⎞

qk – ∑
q=2

Nm

 
 aq 

∧
Zqk 

2

 , (12) 

 

where 
∧
Zqk is the gradient of the qth polynomial on the 

kth subaperture of the sensor. In Ref. 16 the gradients 
∧
Z

qk were calculated at the subaperture centers while in 

Ref. 19 the variant was considered of calculating the 
average over the whole subaperture gradient of the 
corresponding polynomial. We have used the latter 

method and determined the components of the vector 
∧
Zqk 

as the coefficients of the equation of a plane 
approximating the polynomial Zq on the kth subaperture. 

By solving the variational problem of minimazing the 
functional F, we obtain a system of linear equations 
which, in the matrix form, can be written as  
 
⎜⎜W⎜⎜ ⎜⎜aq⎜⎜ = ⎜⎜V⎜⎜ ⎜⎜gk⎜⎜ , (13) 

 
where W is the Nm by Nm matrix while V is the Nm by NS 

matrix. A solution of the system of linear equations (13) is  
 
⎜⎜aq⎜⎜ = ⎜⎜Q⎜⎜ ⎜⎜gk⎜⎜ , (14) 

 
where the matrix Q of the Nm by NS rank is related to the 

matrices W and V by the equation  
 
⎜⎜Q⎜⎜ = ⎜⎜W⎜⎜–1 ⎜⎜V⎜⎜ . (15) 
 
The obtained vector {aq} was used for calculating the 

displacements of segments of the corrector along the Z 
axis. To do this we preliminarily calculated the mean 

value 
∼
Zqk of the polynomial Zq on the area corresponding 

to the kth element of the corrector and then summed up 
these values with the weights aq. Thus, the displacement 

of the kth element of the corrector is calculated by the 
formula  
 

Ck = ∑
q

 
 aq 

∼
Zqk . (16) 

 
To control the tilts of the corrector elements we 

directly used the estimates of an average, over the 
corresponding subaperture, value of the wave–front 
gradient. This is possible in our case because the number, 
size and arrangement of the elements of the corrector are 
the same as for the subapertures of the sensor.  

Depending on the number of polynomials, and for 
NS = 16 the time (in milliseconds) of calculation of the 

coefficients aq and the displacements Ck with the use of 

the gradients gk and precalculated matrix Q on a 

computer with the INTEL–80386 processor (with clock 
frequency of 25 MHz) was:  
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Nm 3 6 10 15 21 28 

time 3 5 7.5 11 15 20 
 

this time increases approximately by a factor of four for 
NS = 64  

 

Nm 3 6 10 15 21 28 

time 9 17 27 39 54 72 
 

5. ANALOG METHOD FOR RECONSTRUCTING THE 
WAVE FRONT 

 
It should be first mentioned that in fact this analog 

method is not the measurement technique. It is rather a 
technique for the phase control or formation of the phase 
distribution using data of phase gradients measured by the 
Hartmann method.  

In order to put this method into practice one should 
have a special controllable (active) mirror, the shape and 
size of an individual element of which completely coincide 
with those of a subaperture of a Hartmann meter which are 
taken in accordance with the input pupil of the optical 
system. Such a mirror belongs to the class of mirrors 
operating in the regime of zonal control. The reflecting 
surface of the mirror is composed of squared segments. The 
number of elements NE = m2

H, where mH is the dimension of 

the Hartmann matrix.  
The mirror has a multilayer structure. The first 

element (or layer) of the mirror serves as the base plate for 
the whole mirror, the second layer is the active element of 
the bimorph type rotating the whole mirror surface at 
angles whose values are calculated by averaging the data 
obtained with the use of the Hartmann sensor at all 
subapertures. The third layer is the active element rotating 
an individual segment of the mirror (in the case of square 
matrix each of these segments consists, in turn, of four 
individual elements) at the angles obtained by averaging the 
data of measurements over each of segments. Next 
controlling layer of mirror consists now of 16 segments. And 
further every subsequent layer is a set of active elements, 
controllable only with respect to the tilt. For the square 
Hartmann matrix the number of controlling layers of the 
mirror is equal to 1 + 1/2log2NE. Thus, if the number of 

elements in the Hartmann diaphragm is 64, then the mirror 
has 4 controlling layers.  

It seems so that in the limiting case of dividing the 
mirror into a large number of controlling zones, it could be 
possible to describe in full detail the phase function (or the 
mirror surface) in terms of the tilts of the layers relative to 
each other.  

Controlling over each layer within an individual 
element is calculated by a simple summation of measured 
local gradients of the phase minus the control at the 
preceding step.  

 
6. PIDF IN THE CASE OF USING THE SEGMENTED 

CORRECTOR 
 

In this section we shall present the results of 
calculations of the PIDF performed under the assumption 
that at each point of the aperture the distortions of wave 
front are known. For each element of the corrector the tilts 
and displacements were determined from the condition of 
minimizing the residual distortions of wave front by the 
least–squares method. The obtained PIDF's illustrate the 
restrictions associated only with the finite number of 
elements of a corrector.  

Shown in Fig. 1 is the radial distribution I(ρ) of the 
PIDF obtained by averaging the long exposure PIDF I(ρ, 
ϕ) over the angle ϕ. Figure 1a presents the data obtained 
at r0 = 20 cm (D/r0 = 5), while Fig. 1b at r0 = 10 cm 

(D/r0 = 10). The number NC of the corrector elements 

has varied from 1 to 64. Table I lists the values of the 
Strehl ratio (St) being equal to the ratio of the PIDF 
maximum to its diffraction value and full width of the 
PIDF at the level of half–maximum (English 
abbreviation is FWHM). Here and in the below 
consideration the wavelength λ is taken to be equal to 
0.55 μm.  

 

 
a 

 
b 

 
FIG. 1. The PIDF for ideally measured wave front 
distortions as a function of angular distance α when 
correcting the distortions by a segmented corrector: without 
any corrections (1), NC = 1 (2) (correction of the common 

tilt), 4 (3), 16 (4), and 64 (5); r0 = 20 cm (a), and 

r0 = 10 cm (b).  

 
TABLE I. 

 

NC d/r0 
St FWHM 

r0 = 20 cm 

– – 0.03 0.5′′ 
1 5 0.13 0.14′′ 
4 5/2 0.45 0.10′′ 
16 5/4 0.67 0.09′′ 
64 5/8 0.75 0.09′′ 

r0 = 10 cm 

– – 0.008 1.1′′ 
1 10 0.017 0.64′′ 
4 5 0.089 0.11′′ 
16 5/2 0.31 0.10′′ 
64 5/4 0.46 0.10′′ 
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Thus we can see, that the diffraction resolution 
(FWHM = 0.9′′ for D = 1 m and λ = 0.55 μm) is reached 
already at the size of the corrector element equal 
approximately to 3–5 radii of coherence r0. Further increase 

of the number of elements of a corrector results only in the 
intensity increase. This conclusion well agrees with the 
results obtained in Refs. 10 and 11 for a segmented 
corrector with hexagonal elements.  

 
7. PIDF IN THE CASE OF A MODAL 

RECONSTRUCTION OF A WAVE FRONT 
 

In this section we present the results of calculation of 
the PIDF of an adaptive telescope which uses the wave–
front sensor of a Hartmann type and a segmented corrector 
of the wave front which is controlled according to the 
above–described algorithm of the modal reconstruction of 
the wave–front distortions.  

 

 
 

FIG. 2. PIDF value calculated using a modal algorithm 
of wave–front reconstruction for different numbers of 
polynomials Nm in the modal representation (11): 

Nm = 3 (1), 6 (2), 10 (3), 15 (4), 21 (5), and 28 (6); 

r0 = 20 cm and NC = NS = 16.  

 
Shown in Figs. 2a and 2b are the long exposure 

PIDF's obtained for r0 = 20 cm and NS = 16, while in 

Table II the corresponding values of the St parameter and 
the FWHM are listed. In Tables II and III marked by 
asterisks are the strings corresponding to the estimate of a 
local tilt according to the displacement of the center of 
gravity focused by the radiative subapertures. In other 
cases we used the least–squares method and calculated 
the tilt directly from the wave–front measurements. The 
number Nm of polynomials in the modal representation 

(Eq. (11)) of the wave front was 3, 6, 10, 15, 21 or 28,  

that corresponds to the polynomials of the 1st, 2nd, 3rd, 
4th, 5th or 6th orders, respectively. At Nm = 21 an 

increase in the error of wave–front reconstruction was 
observed. It appears to be caused by the effects discussed 
in Ref. 19. However, as can be seen from Fig. 2 and 
Table II, as early as at Nm = 10 the growth of the 

efficiency of the correction does not practically change. 
Thus, it appears that the amount of polynomials being 
equal to the number of the subapertures of the sensor is 
quite sufficient for a successful use of the algorithm of 
modal reconstruction of wave fronts.  

 
TABLE II. 

 

Nm St FWHM 

3 0.11 0.20′′ 
6 0.25 0.13′′ 
10 0.47 0.10′′ 
15 0.54 0.10′′ 
15*

 0.58 0.10′′ 
21 0.30 0.11′′ 
28 0.09 0.27′′ 

 
8. PIDF FOR THE CASE OF ANALOG ALGORITHM 

OF A WAVE–FRONT RECONSTRUCTION 
 

In this section we present the results of calculation 
of the PIDF with the use of analog algorithm of a wave–
front reconstruction described in the preceding section. 
The number of the subapertures of the sensor and 
segments of the corrector were 4, 16 and 64. The 
calculational results are shown in Fig. 3 and in Table III. 
It can be seen, that although the quality of a correction is 
markedly worse than in the case of using the method of 
modal reconstruction of wave front, nevertheless the use 
of a sufficiently large number of subapertures of a sensor 
allows one to reach a multiple intensity increase as 
compared to the uncorrected PIDF.  

 

 
 

FIG. 3. PIDF value calculated using analog 
reconstruction of wave front: r0 = 20 (a) and 10 cm (b), 

NS = 4 (1), 16 (2), 64 (3), and 256 (4).  
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TABLE III. 
 

NS d/r0 
St FWHM 

r0 = 20 cm 

4 5/2 0.20 0.12′′ 
4*

 5/2 0.17 0.14′′ 
16 5/4 0.24 0.14′′ 
64 5/8 0.26 0.14′′ 

r0 = 10 cm 

4 5 0.03 0.27′′ 
16 5/2 0.07 0.20′′ 
64 5/4 0.10 0.19′′ 
256 5/8 0.10 0.21′′ 

 

9. EFFICIENCY OF MODAL ALGORITHM FOR 
RECONSTRUCTING UNDER CONDITIONS OF A 

PHOTON NOISE 
 

In this section we present the results of calculation of the 
PIDF under conditions of presence of a photon noise in the 
wave–front sensor. The calculations were made for 
r0 = 20 cm. In one case, keeping the number of subapertures 

of a sensor NS = 16 fixed we varied the statistically mean 

number of photons Nph (Fig. 4, Table IV), while in the other 

case the number of subapertures was varied at a fixed photon 
number Nph = 800 (Table V). The number of polynomials 

being used in the algorithm of modal reconstruction of wave 
front was taken to be equal approximately to the number of 
subapertures.  

 

 
 

FIG. 4. PIDF value obtained with the use of a modal 
algorithm in the presence of quantum intensity 
fluctuations: Nph = 1600 (1), 800 (2), 400 (3), and 

100 (4); r0 = 20 cm, NS = 16, and Nm = 15.  
 

Thus, approximately one hundred photons per each 
subaperture of the sensor are needed (in this case the 
subaperture size was equal approximately to the radius of 
coherence) during the period when the turbulence can be 
considered frozen, to keep the efficiency of the correction on 
the level corresponding to the infinite signal–to–noise ratio. 
For a smaller number of photons there is an optimal number 
of subapertures. When the number of subapertures is larger 
than this number, high level of noise leads to a significant 
increase of the measurement error of the local tilts of a wave 
front. In the opposite case the uncertainty in reconstruction 
increases as a result of insufficient spatial resolution of the 
sensor.  

 

TABLE IV. 
 

Nph 
St FWHM 

 

1600 0.39 0.11" 
800 0.28 0.12" 
400 0.17 0.14" 
200 0.10 0.20" 

 
TABLE V. 

 

NS Nm St FWHM 
 

4 6 0.26 0.12" 
16 15 0.28 0.12" 
64 28 0.18 0.15" 

 
CONCLUSIONS 

 
In this paper we have presented the results of 

calculations of the PIDF of an adaptive telescope with a 
wave front sensor of a Hartmann type and a segmented 
corrector that are obtained with the help of the program 
that could successfully used in the researches aimed at 
developing systems of adaptive optics, for selecting 
optimal configurations of a sensor and of a wave–front 
corrector, as well as for testing of different algorithms of 
controlling the corrector. The program is applicable not 
only to statistical simulations, in which case the radiation 
parameters are averaged over an ensemble of random 
realizations of the turbulent distortions, but also to the 
dynamical simulations, where time averaging is assumed. 
In this paper we have presented the results of statistical 
simulation. These results allow one to estimate the size of 
elements of a sensor and of subapertures of a corrector, as 
well as the number of photons of a reference radiation 
which still provides obtaining the angular resolution close 
to the diffraction limited value. In our model the number 
of elements of a corrector is equal to the number of 
subapertures of a sensor. It follows from the calculational 
results that when a modal algorithm of reconstructing a 
wave front is used this number of elements of the 
corrector is too large because the diffraction resolution 
can be reached using much smaller number of elements 
(each of which has three degrees of freedom) provided 
that the wave–front distortions are known.  

Further investigation of the PIDF of the adaptive 
telescope implies carrying out dynamical modeling of the 
turbulent distortions of the wave front and of components 
of an adaptive system. This will make it possible to 
optimize the time of recording the signal by a wave–front 
sensor and to examine the algorithms for controlling the 
corrector and for forecasting the wave–front distortions 
according to the measurements done previously. The 
development of this computer program includes the 
possibility of taking into account the effects of 
nonisoplanarity, modeling of artificial reference sources, 
different types of wave–front sensors (shift 
interferometer, Hartmann sensor of the wave–front 
curvature), different types of correctors, as well as the 
adaptive systems with several wave–front correctors.  
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