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Applicability of the simplex search method to the problem of compensation for 
thermal blooming of laser radiation in a randomly inhomogeneous medium is studied 
using numerical simulations. An algorithm enabling one to improve the efficiency of 
the beam phase control is proposed. The algorithm is compared with the gradient 
technique. It is shown that the simplex search method is stable under conditions of 
moderate turbulence and fluctuating wind velocity. 

 
The adaptive methods of light beam phase control1 are 

now being widely used for compensating for light wave 
distortions caused by nonlinear refraction and turbulent 
fluctuations of the refractive index of the medium. Among 
these methods cross–aperture sounding has become of a 
wide use. Use of the cross–aperture sounding in 
combination with a gradient procedure for searching for the 
extremum in the irradiation of an object has been 
considered in Refs. 2 and 3 for the case of correcting for 
thermal defocusing of beams propagating through a medium 
with velocity pulsations. An effective control of a beam 
under conditions of high–frequency pulsations of the 
velocity is shown to be possible only with the help of rapid 
phase variations (sounding over unsteady parameters of a 
light field in the medium) what requires very high speed of 
operation of an adaptive system actuators.3 In this 
connection for the control of light beams it is expedient to 
employ the methods which do not require calculations of 
the goal function gradient, and in particular, a simplex 
search method.4 Comparative analysis of algorithms of 
compensating for stationary wind defocusing5 reveals that 
the simplex method provides the highest rate of convergence 
of an iteration process of the phase optimization. In the 
regime of nonstationary wind refraction6 a stepwise 
variation in controllable coordinates typical for the simplex 
method results in a forced scanning of the beam which 
improves the conditions of propagation.  

The above said allows one to assume that the simplex 
method might be convenient for solving the problem of 
dynamic correction for distortions of a light beam 
propagating along the atmospheric path with pulsations of 
the wind velocity and fluctuations of the refractive index.  

This paper concerns a numerical analysis of control of 
an intense light beam phase using an adaptive optical 
system. Nonstationary wind refraction in the turbulent 
atmosphere with random wind is considered. The efficiency 
of a simplex method of searching for maximum in the 
irradiation of an object in real time depending on the 
control base is studied. The comparison with the gradient 
method is made.  

 
1. MODEL OF LIGHT BEAM PROPAGATION  

 
When constructing a numerical model let us assume 

that a laser source delivers a single–mode beam of a 
Gaussian profile E

0
 = A

0
 exp( – (x2 + y2)/2a2

0
). The wave 

front of the beam controlled with a modal corrector (an  

elastic mirror) reflecting from which a collimated beam 
acquires the phase  
 

U(x, y, t) = k ∑
i=1

N
 
 ai(t) Wi(x, y) , (1) 

 
where k is the wave number, ai are the controllable 

coefficients, Wi are the basis modes, and N is the number of 

controllable coordinates. A complex amplitude of the light 
field E incident on the medium (in the plane z = 0) is 
determined as  
 

E(x, y, 0, t) = E
0
(x, y) exp (iU(x, y, t)) . (2) 

 

The goal function of the control is the focusing criterion Jf 

(see Ref. 1) calculated for the aperture of the radius a
0
.  

In the quasioptical approximation of the theory of 
diffraction the beam propagation in a weakly absorbing 
medium is described by the equation  
 

2 i k 
∂E
∂z  = Δ

⊥
E + 2 

k2

n
0
( )∂n

∂T T+ n
∼

 E , (3) 

 

where n
∼
 is a random field describing natural fluctuations of 

the refractive index in the medium and T = T(x, y, z, t) is 
the perturbation of the medium temperature along the path 
induced by a beam. For the latter the equation of heat 
transfer in a moving medium  
 

ρc
p( )∂T

∂t  + (v∇) T  = α I , I = 
cn

0

8π
 EE* (4) 

 

is valid. Where ρ is the medium density, c
p
 is the specific 

heat, and v is the velocity of the medium motion, which is a 
random value in the atmosphere. Following the structure of 
the atmospheric turbulence,7 v is assumed to have a 
constant component v

0
 and random pulsations δ νx, δ νy, and 

δ νz. Since the velocity components perpendicular to the OZ 

optical axis are decisive in the formation of a heat lens in 
the beam channel, ν

0
 is thought to be a velocity component 

lying in the plane XOY. If we assume the direction of the 
OX axis to be coincident with the mean velocity v

0
 of the 

medium motion we obtain that v = {ν
0
 + δ νx, δ νy}.  
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Standard deviations of the fluctuating components are 
considered to be of the same value σ

νx
 = σ

νy
 = σ

ν
. A 

quantitative measure of the thermal distortions is the 

nonlinearity parameter R = R
0
ν

0
/ν, where R

0
 = 

2k2a3
0
aI

0

n
0
 r c

p
ν

0

 
∂n
∂T is the value determined based on the mean velocity ν

0
 

of the medium. The parameter R
0
 is proportional to the 

total power P
0
 = πa2

0
I
0
 and the mean time of the 

radiation interaction with the medium τ
ν
 = a

0
/ν

0
.  

To simulate fluctuations of the refractive index of 

the medium n
∼
 the modal representation8 is used which 

allows one to essentially widen the inhomogeneity 
spectrum into the low–frequency spatial range. In this 

case, in each plane z = const, the perturbations n
∼
 are 

expanded into a series over the orthogonal Zernike 
polynomials Zi within some aperture of a radius R:  
 

n
∼
(x, y) = ∑

i=1

I
 
 
∼
αi Zi(x, y) , (5) 

 

where the random coefficients a
∼

i are distributed according 

to the log–normal law with the zero mean, the variance 
being determined by the atmospheric conditions along the 
path. As shown in Ref. 8 in most practical cases it is 
quite sufficient to use only the first– and the second–
order polynomials (I = 5) in expansion (5). In this case 
R = a

0
/2.  

Numerical solution of Eq. (3) has been obtained by 
the splitting method and using the fast Fourier transform 
algorithm. Material equation (4) was integrated using an 
explicit two–step Lax–Vendroff scheme.9  

 

2. ALGORITHM OF A BEAM PHASE CONTROL 
 

In the problem considered the main factors that 
worsen energy characteristics of a beam in the 
observational plane are its random wandering and 
defocusing. These factors must be taken into account first 
in developing the control strategy. Previously used 
modification of the algorithm of simplex search6 cannot 
provide stable control under pulsations because it does 
not assume a movement of the simplex towards a 
"drifting" target. Therefore it would be reasonable to use 
search following a flexible strategy which can be divided 
into two stages. The first stage includes the control at the 
initial step of medium heating (during the time interval 
of the order of 2 τ

ν
). Here, due to the properties of the 

simplex method and strongly pronounced transient 
processes it is necessary to use the algorithm from Ref. 6, 
which allows one to prevent the simplex from cycling. 
Then, at the second stage, when random wandering of the 
beam and transient processes occurring due to changes in  

a medium state are of particular importance one should 
employ the algorithm with the free reflection of vertices. 
Its basic rule is to reflect the worst vertex of the simplex 
without any additional conditions. As will be shown 
below such an organization of the control makes it 
possible to compensate for random wanderings of the 
beam and to avoid unstable regimes of search.  

 
3. REGIME OF WEAK FLUCTUATIONS OF THE 

REFRACTIVE INDEX 
 
First we consider propagation of a beam in a medium 

with the wind–induced velocity pulsations along the 

path, natural fluctuations of the refractive index (n
∼
 ≈ 0) 

being neglected. On the near–ground horizontal paths the 
regime of sufficiently frequent pulsations of the velocity 
can occur that makes the transitent processes in the 
beam–medium system be significantly strong. Let us 
assume for clarity that the mean time of pulsation 
freezing is T

ν
 = 2 τ

ν
. Taking into account the character of 

nonlinear distortions of a beam it is natural to choose the 
controllable wave front in the form  
 

U(x, y) = Sx 
x2

2  + Sy 
y2

2  + θx 
x + θy 

y , (6) 

 
where Sx, Sy, θx, and θy are the wave front curvatures 

and tilts with respect to the OX and OY axes, 
respectively.  

However with a large number of coordinates under 
control it is difficult to make an a priori analysis of the 
optimum search trajectory which is useful, in particular, 
for determining the initial simplex configuration. This is 
of particular importance in the presence of transitent 
processes: the first steps of search should be done in the 
true direction (e.g., the beam must start its focusing 
rather than defocusing). In the four–dimensional space 
there appear difficulties associated with the determination 
of this direction. Therefore it seems to be reasonable to 
decrease the number of controllable coordinates and thus 
to increase the operation rate of the adaptive system.  

Taking into account the fact that the beam 
defocusing is in fact axisymmetric in the presence of 
random pulsations of the velocity it is natural to decrease 
the number of the controllable variables by introducing a 

combined mode ( )x2

2  + 
y2

2 , i.e., to assume that  

 

U(x, y) = S ( )x2

2  + 
y2

2  + θx 
x + θy 

y . (7) 

 
Figure 1 shows the efficiency of a beam control in 

basis (7) using the comparison of two strategies of search 
for the focusing criterion maximum – constant strategy 
"without cycling"6 and a flexible strategy proposed in 
this paper (Sec. 2).  
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FIG. 1. The dependence of the normalized criterion of focusing Jf on the time t for the control being done in basis (7) 

with the constant (curve 1) and a flexible (curve 2) strategies of search. Time of the strategy change t = 2τv. Conditions 

of propagation are z
0
 = 0.5 kα2

0
, R

0
 = – 20, and σv= 0.3 v

0
.  

 
In the subsequent numerical experiments the beam 

control was assumed to be done during a finite time interval 
T = 12 τ

ν
 after switching a laser source. The efficiency of 

search was estimated by the total light energy entering the 
receiving aperture during the time T. The results of 
numerical simulations have shown that the optimal size of 
the simplex L

opt
 is determined only by the average–over–

the–path value of the nonlinearity parameter and could be 
estimated on the basis of the considerations given in Ref. 6.  

 

Figure 2 shows a typical time dependence of Jf in the 

course of the control. Also represented here are the values of 
the standard deviation of the focusing criterion averaged 
over 120 realizations. It was found that for the values 
< R

ν
 > = – 20 ... – 30 the control based on the simplex 

method made it possible to increase the energy 
characteristics on the average by a factor of 1.4, as 
compared with the propagation of both collimated and 
focused beams.  

 

 
 

FIG. 2. The dependence of the normalized criterion of focusing Jf on time in one of the realizations of the wind velocity 

and standard deviation σj obtained by averaging over 120 realizations. Curves: 1) without a control and 2) with the 

control in the basis (Eq. (7)). Conditions of propagation: z
0
 = 0.5 kα2

0
, R

0
 = – 20, and σ

ν
= 0.3 ν

0
.  
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As can be seen from the comparison with the gradient 
method the use of both these methods enables one to reach 
approximately the same average over time values of the 
focusing criterion < Jf > (see Fig. 3).  Under conditions of 

wind velocity pulsations in the range of σ
ν
 up to σ

ν
 ≤ 0.5 ν

0
 

the algorithm of simplex search is stable. It should be noted 
that with the σ

ν
 increase the standard deviations of focusing 

criterion in fact does not increase.  
 

 
 

FIG. 3. Mean values of the normalized criterion of 
focusing as a function of the mean parameter of 
nonlinearity along the path during the control based on 
the gradient method in the basis (Eq. (6)) (curve 1) and 
the simplex method in the basis (Eq. (7)) (curve 2). 
Conditions of propagation: z

0
 = 0.5 kα2

0
 and σ

ν
= 0.3 ν

0
.  

 

This may be accounted for by the fact that the 
algorithm under study provides uniform scanning with a 
beam over mutually perpendicular planes so that the 
mean deviation of the center of gravity of the beam 
< r

c
 > ≤ a

0
/2. It should be noted that the use of the 

gradient method under conditions when σ
ν
 ≥ 0.3 ν

0
 would 

require a more complicated control procedure to provide 
the stability, for example, to use separate soundings for 
the focusing and tilts.3  

 
4. TURBULENT ATMOSPHERE WITH A RANDOM 

WIND ALONG THE PATH 
 

We consider here the problem of propagation of a 
beam in a randomly inhomogeneous medium described by 
Eqs. (3) and (4) with all terms taken into account. Let us 
assume that the mean times of frozen wind velocity 
pulsations as well as of each realization of the random 

field of the refractive index fluctuations n
∼
 are the same 

and equal to 2 τ
ν
, their change occurring at the same 

instant of time.  
The quality of the control is studied as a function of 

the parameter Ds(2a), Ref. 10, which specifies turbulence 

of the atmosphere along the path. The efficiency of the  

correction W is estimated based on the ratio of the total 
energy incident on the receiving aperture during the time 
of the control T = 12 τ

ν
 to the same value but in the case 

of propagation of a focused uncontrollable beam. 
The calculational results for a single concrete set of 

realizations replacing each other in a time interval T are 
depicted in Fig. 4. As can be seen from this figure, the 
control based on the simplex method is stable and 
reasonably efficient within a wide range of the parameter 
Ds(2a). However, with the increase of this parameter the 

quality of the correction decreases. It is obvious that 
under these conditions the optimal size of a simplex must 
be reconsidered.  

 

 

 
FIG. 4. The dependence of the control efficiency W on the 
structure function of the spherical wave phase Ds(2a). 

Conditions of propagation: z
0
 = 0.5 kα2

0
, R

0
 = – 20, and 

σ
ν
= 0.3 ν

0
.  

 
In conclusion it should be noted once more that in 

parallel with the known useful properties of the simplex 
search in the above–considered problems this method 
improves the possibilities of a beam control in a real–
time scale since it requires approximately a two times 
lower operation rate of the system compared to that in 
the gradient techniques.  
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