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Dependence of the mean–square number of rays on a distance in the region 
behind a phase screen is obtained. The probabilities of single–, three–, and five–ray 
propagation are found using the average number of rays and their mean square. It is 
shown that the multiray propagation is manifested at distances much longer than the 
distance at which the strong intensity fluctuations of a wave start to manifest 
themselves.  

 
As optical waves propagate through a randomly 

inhomogeneous medium or behind a random phase screen, 
the large–scale (compared to the wavelength) 
inhomogeneities of the refractive index act as lenses 
resulting in formation of caustics. A number of interesting 
effects accompany the formation of caustic singularities. 
For example, it was shown in Ref. 1 that the region in 
which the probability of formation of even a single 
caustic differed noticeably from zero could be considered 
as the start of the region in which the strong fluctuations 
of the wave intensity occur. At the same time, it is well 
known2 that the multiray propagation may accompany the 
formation of caustic. In this case not one but already 
several rays with different initial coordinates arrive at a 
fixed point in space.  

The statistical properties of multiray propagation 
must be known for its description. Dependence of the 
average number of rays <N (t)> in the region behind the 
screen on the coordinate t of wave propagation was found 
in Ref. 3. In addition to the fact that knowledge of the 
number of rays arriving at the given point (x, t) is 
important (here for simplicity we will consider only the 
transverse coordinate x, the quantity <N> bears 
supplemental information about the multiray propagation. 
First, it allows us to estimate the applicability limits of the 
single–ray approximation and second, it can be used to obtain 
the probability of the three–ray propagation P(3; t).  

Analogously to Ref. 3, i.e., using the normalization 
condition for the probability density and definition of the 
average, we can write down 
 

P(1; t) + P(3; t) + ... + P(N; t) + ... =1 , 
 

1 P(1; t) + 3 P(3; t) + ... + N P(N; t) + ... = <N(t)> , 
  (1) 
12P(1; t) + 32P(3; t) + ... + N 2P(N; t) + ... = <N 2(t)> , 
 

        . . . . . . . . . . . . . . . 
 

1kP(1; t) + 3kP(3; t) + ... + N kP(N; t) + ... = <N k(t)> . 
 

        . . . . . . . . . . . . . . . 
 

Here the probability P(N, t) is equal to the 
normalized length of the intervals along the transverse 
axis at the distance t from the screen within which N 
rays fall. As far as the number of rays N infinitely 
increases3 with increase of t, then it follows from the 

system of equations (1) that all the moments <N 
κ>, 

where κ = 1, 2, ..., must be known to obtain the 
probabilities P(N; t). If we ignore the probability of  

occurence of seven and more rays, then the first three 
equations of the system of equations (1) will form the 
closed system from which the probabilities P(1; t), 
P(3; t), and P(5; t) can be found providing <Ν(t)> and 
<N2(t)> are known. The relationship between <N(t)> and 
the Lagrangian average of the modulus of the beam 
divergence has been found in Ref. 3  
 

<N(x, t)> = <⏐J(x, t)⏐>
L
 .  

 

Here we can calculate <N 
2(x, t)>.  To do this for the 

coordinate X of the ray coming from the point (y, t), the 
angle of ray arrival V, and the ray divergence J, we 
transform from the Lagrangian two–point probability 
density to the Eulerian one  
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Let us consider x
2
 = x

1
 + s and introduce the notation 

for the numbers of rays arriving at the points (x
1
, t) and 

(x
2
, t)  

 

N(x
1
, t) = N ,  N(x

2
, t) = M .  

 

Integrating equality (2) over y
1
 and y

2
 and taking the 

formula for the total probability into account, we derive  
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where P(N, M; s, t) is the probability that N rays will 
arrive at the point (x

1
, t) and M rays – at the point 

(x
1
 + s, t); W E

nm is the joint probability density of the 

Eulerian fields t and j in the nth and mth rays under the 
same conditions. We multiply the last equality by ⏐j

1 
j
2
⏐ 

and integrate it over j
1
, j

2
, υ

1
, and υ

2 
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It can be seen that the right–side expression represents 
the correlation function of the number of rays  
 

KN (s, t) = <N(x, t) N(x + s, t)> .  
 

Let us simplify the left side of Eq. (3) accounting for the 
statistical homogeneity of the medium. To do this, we go 
over to the coordinates  
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and integrate over q
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By definition,  
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Substituting W 
L into Eq. (4) on account of the properties 

of the δ–function, we obtain  
 

KN(s, t)=⌡⌠
–∞

+∞

 
 <⏐J(0, t) J(s

0
, t)⏐δ(X(s

0
, t) –X(0, t) – s)>ds

0
. (5) 

 

We employ the relations for the coordinate and divergence 
of the geometric optical ray behind the phase screen3  
 

X (y, t) = y + υ
0
(y) t ,  

 

J (y, t) = 1 + u (y) t ,  u = υ
0
′(y) .  

 

Then, taking these equations into account, we can perform 
the averaging in Eq. (5) using the joint probability density 
of the quantities (s – s

0
)/t, p

1
 = u(0) t, and p

2
 = u (s

0
) t  
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The sought–after quantity <N 
2(t)> can be obtained from 

Eq. (6) for s = 0.  
The field υ

0
(y) is taken to be Gaussian with zero 

average and covariance function  
 

B
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where d is the characteristic scale of the inhomogeneities of 
the screen. The probability density of the three–dimensional 
normal distribution4 is  
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where  
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In our case   
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while the cross–correlation coefficients have the form   
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In addition, the variances σs and σp of the fields s and p
1,2

 

are also expressed in terms of the function B
υ
0
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Further we can conveniently use the new dimensionless 
coordinates  

 

η
0
 = 

s
0
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t
t
0
 ≡ t 

σ
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d  .  

 

Here d is the characteristic focal length,5 i.e., the distance 
from the screen at which the strong fluctuations of the wave 
intensity occur.  

Substituting now the function W(η
0
, p

1
, p

2
; z) into 

Eq. (6), we finally derive  
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Here we introduce the notation  
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FIG. 1. Dependence of the mean square <N 
2
> and the 

average number <N> of rays on the distance in the region 
behind the phase screen.  
 

Figure 1 shows the dependence <N 
2(z)> obtained by 

numerical integration of Eq. (7). It also shows the 
dependence <N(z)> calculated by the formula given in 
Ref. 3  
 

<N(z)> = Φ( )1z  + 
2
π z exp( )– 

1

2 z 
2  ,  

where Φ(τ) is the error integral.  
Now from the system of equations (1) we can derive 

the probabilities of the single–, three–, and five–ray 
propagation  
 

P(1; z) = 
15 – 8<N> + <N 

2>
8  ,  

 

P(3; z) = 
–5 + 6<N> – <N 

2>
4  ,  

 

P(5; z) = 
3 – 4<N> + <N 

2>
8  .  

 

For example, at z = 1, i.e., in the region of strong 
focusing, by substituting <N> = 1.167 and <N 

2> = 1.675 
into the above relations, we obtain P(3; z = 1) = 0.08175 
and P(5; z = 1) = 0.000875.  

This means that the multiray propagation is manifested 
at distances much longer than the distances at which the 
strong overshoots of the wave intensity occur in the 
vicinities of the originating caustics.  
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