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This paper presents some results of a theoretical study of the effect of gain 
saturation of a diffraction–coupled laser array in an active medium on the structure 
of collective modes in the near and far diffraction zones. 

 
INTRODUCTION 

 

Modular multibeam laser systems have been 
increasingly employed in the last few years. Due to high 
quality of radiation and simple construction this approach 
makes it possible to enhance the total power of output 
radiation by increasing the number of modules. 

Summation over incoherent fields of individual 
modules provides the linear increase in the intensity I with 
increase of the number of modules N(Iincoh ∼ N), and the 

total divergence of radiation is determined by an aperture of 
a single module. In the case of coherent field summation the 
aperture of the entire array has a decisive impact on 
divergence of the output radiation and hence much larger 
values of peak intensity are attained (Icoh ∼ N 2). 

An optical coupling shows a significant promise for 
frequency and phase synchronization of the fields of 
individual modules. A large number of papers are devoted to 
this problem, the basic results of these papers are described 
in Ref. 1. The efficiency of various methods of optical 
coupling and stability of a synchronous regime of generation 
of two lasers were analyzed in Refs. 2 and 3. The 
eigenmodes of collective generation by a large number of 
lasers were investigated in Ref. 4. 

As a practical matter, the optical coupling arising from 
the diffraction exchange of radiation between the active 
elements placed inside the common cavity3 is a subject of 
interest. It should be noted that for regular arrangement of 
lasers in the array the synchronization regime is effectively 
separated from the regime of independent generation by 
positioning a coupling mirror at the distance z = zT/2, 

where zT = 2a2/λ is the Talbot distance, a is the period of 

the array, and λ is the wavelength.6,7,8 When radiation is 
reflected from the coupling mirror, the field is completely 
reproduced at the output ends of the active elements. 

The theoretical studies and experimental observations 
indicate that the quality of alignment and the spread in the 
laser parameters strongly influence the efficiency of 
frequency and phase synchronization. Thus detuning of 
natural frequencies of the two lasers coupled through a 
semi–transparent mirror or an opening produces phase shift 
between the output fields9 and at the exit from a locking 
region, this leads to a breakdown of synchronous regime and 
transition to an independent or chaotic generation.2,3,10 

In large laser arrays random detunings of their natural 
frequencies result in formation of individual regions of 
cophased generation and hence degrade the coherence of 
output radiation of such systems.11,12 Moreover, in the 
coupling arising from the Talbot effect there are several 
modes of collective generation with different field 
distributions but degenerated in their losses. On the one 
hand, this may result in the development of multimode  

generation and hence in the decrease of the total radiation 
divergence. On the other hand, this effect can be used for 
control of a directional pattern with relatively simple 
(binary) spatial or phase correctors.13,14 

Thus the control of collective generation of the array 
of optically coupled lasers is of interest for both 
compensation for the random fluctuations of the array 
parameters and control of the parameters of output 
radiation in real time. Such an analysis was carried out for 
linear problem in Ref. 15. 

In this paper we investigate the gain saturation effect 
in laser active media on the radiation profile of collective 
modes with the highest Q–factor. The field distribution in 
the near and far diffraction zones is examined as a function 
of the parameters of the finite laser array. 

In contrast to Ref. 4 in which the effect of the active 
medium on the structure of the output radiation was 
considered based on a continuous model of the diffraction–
coupled laser array, the present paper is concerned with an 
adequate discrete model in which a distributed nature of the 
medium is taken into account. 

 
1. MATHEMATICAL MODEL 

 
A one–dimensional periodic array of diffraction–

coupled lasers is treated (Fig. 1). Individual active elements 
are coupled due to diffraction of radiation reflected from a 
coupling mirror M. 

Let us assume that during collective generation of lasers 
the transverse modes of waveguides f(x) are undistorted. Then 
the radiation field of the array in the plane z = z0 is 

represented by superposition of the modes f(x) 
 

E(x, z0) = ∑
m

 em f(x – ma) . (1) 

 

Under these assumptions the field E(x, z) is unambiguously 
determined by complex amplitudes of waveguide modes em. 

The amplitudes em form the vector of the radiation profile 

in the regime of collective generation
 
 

 

ET = (e1, e2, ..., eN) , 

 

where N is the number of lasers in the array.  
Transformation of the field for onore passage round the 

cavity can be represented in the operat form  
 

E(x, z0 + 2L) = U
∧

P
∧
G
∧
E(x, z0) exp{iθ} , (2) 

 

where G
∧
 is the linear diffraction operator describing the 

propagation of radiation in the coupling channel from z0 to  
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z0 + 2 zco, P
∧
 is the operator projecting the field E(x, z0 + 2 zco) 

onto the transverse mode of the waveguide f(x), U
∧

 is the 
operator of radiation propagation along the waveguides taking 
into account the gain saturation, and θ is the geometric run–
on of the phase accumulated for one passage round the cavity. 

The action of the operators G
∧

 and P
∧
 on the field 

E(x, z) is reduced to the multiplication of the vector E 
by the matrix of diffraction coupling M whose elements 
have the form15 
 

Mnm = ⌡⌠ ⌡⌠ f(x – na) f(ξ – ma) G(x – ξ, 2 zco) dξ dx , (3) 

where G(x, z) is the Green's function of quasioptical 
diffraction equation. 

The square modulus of the element Mnm indicates 

the relative fraction of the energy of the mth laser which 
sustains generation in the nth laser when the phase shift 
between emissions of these lasers at an input window of 
the nth waveguide equals zero. The argument of the 
element Mnm bears the information about the run–on of 

the phase accumulated along the coupling channel. 
 

 

 
 

FIG. 1. Diffraction–coupled laser array. M is the coupling mirror. 
 

To specify the operator U
∧

 for the nth laser, we find 
the relation between the input ein

n  and output eout
n  

amplitudes of the waveguide modes. The field in the nth 
laser is the superposition of waves propagating in opposite 
directions. The peak intensities of these waves In+ and I– 

n for 

a uniformly broadened gain line obey the equations 
 

dI+
n(z)

dz  = 
G0

1 + I+
n(z) + I– 

n(z)
 I+

n(z) , (4a) 

 

dI– 
n(z)

dz  = – 

G0

1 + I+
n(z) + I– 

n(z)
 I– 

n(z) , (4b) 

 

where G0 is the weak–signal gain. The intensities I+
n(z) and 

I– 
n(z) are normalized to the saturation intensity Is. The 

parameters G0 and Is are taken to be identical for all lasers. 

The condition at the left boundary of the waveguide is  
 

I+
n(0) = R 2 I– 

n(0) , (5) 
 

where R is the coefficient of reflection of the field from the 

mirror M′. 
For the system of equations (4) the relation 
 

I+
n(z) I– 

n(z) = J 2 (6) 

is valid, where J
 2 is the constant independent of z. 

 

Based on Eq. (6) by expressing I+
n(z) in terms of I– 

n(z) 

and integrating Eq. (4b), we obtain 
 

ln un + Iin 
n(un – 1) (R 2 un + 1) = G0 , (7) 

 

where un = 
I– 
n(0)

I+
n(0)

 and Iin
 n = ⏐e inn ⏐2 is the peak intensity of 

the wave entering the nth channel. Using the boundary 
condition given by Eq. (5) and relation (6), we can find the 
unknown relation between e inn  and eout

n : 
 

eout
n  = R un e inn  , (8) 

 

where un(⏐e inn ⏐2) is the solution of Eq. (7) which is a 

function of the square modulus of the input wave 
amplitude. 

Thus the action of the operator U
∧

 is reduced to the 
multiplication by the diagonal matrix whose elements are 

 

(U
∧

)nm = R δnm un . (9) 
 

In the regime of the collective radiation of diffraction–
coupled lasers the field after passage round the cavity is 
reconstructed to within some complex coefficient γ. As a 
result we obtain the following eigenvalue problem: 

 

γ E = U
∧

(⏐E⏐2) M
∧

E . (10) 
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Nonlinear matrix equation (10) determines the losses and 
profiles of radiation of the array of the diffraction–coupled 
lasers under conditions of gain saturation. 

The modulus of the eigenvalue γ characterizes the 
relative losses of radiation for one passage round the cavity 
which are equal to 1 – ⏐γ⏐. Hence the amplitude condition 
of generation of the laser array can be written down as 

 
⏐γ⏐ exp{Gthr} = 1 , (11) 

 
where Gthr is the threshold gain. 

The argument of γ characterizes the fulfilment of phase 
condition of generation at the wavelength λgen 

 
arg γ + θ (λgen) = 2π p , (12) 

 
where p is the integer. 

The run–on of the phase θ, being equal for all 
channels and associated with radiation propagation in the 
coupling channel and waveguide, does not affect the profile 
of the output radiation E. It can be neglected in the 
solution of problem (10). 

 
2. LINEAR PROBLEM 

 
The linear eigenvalue problem  
 

γ0 E = M
∧

 E , (13) 

 
which follows from Eq. (10), corresponds to the system of 
waveguides without the active medium and with ideal 
mirrors (G0 = 0, un = 1, and R = 1). 

The fulfilment of the condition of complete 
reproduction of the field for one passage round the cavity 
given by Eq. (11) yields the expression for the threshold 
gain of collective generation of the kth eigenmode 

 

Gthr
(κ) = – ln⏐γ 0

(κ)⏐ . (14) 

 
In the hypothetical case of an infinite array in which 

the coupling mirror is positioned at a distance being equal 
to half the distance of reproduction (zco = zT/2), the 

cophased (en = e0) and antiphased (en = (–1)ne0) collective 

modes1 have zero losses (⏐γ0⏐ = 1, Gthr = 0). For a large 

but finite number of lasers we failed to obtain rigourous 
analytical solution of eigenproblem (13) with complex 
matrix. 

Let the transverse modes of waveguides f(x) have the 
form 

 

f(x) = 
4 2

πσ 2
 exp

⎩
⎨
⎧

⎭
⎬
⎫

– 
x 2

σ 2
 , (15) 

 

where σ is the characteristic scale of a mode. The period of 
the array is a. 

The dependence of the threshold gain Gthr of 

cophased and antiphased collective modes on the distance 
zco to the coupling mirror is shown in Fig. 2a. It was 

obtained from numerical solution of problem (13). The 
threshold gain of both these modes is seen to possess  

minimum at the same distance zco = zT/2 as for the 

infinite array. The threshold gain of the other modes of 
collective generation (with the same position of the 
mirror) is higher than the threshold for cophased and 
antiphased modes. The nonzero threshold gain in the 
minimum arises from the array finiteness and, 
consequently, from incomplete reproduction of the fields 
of cophased and antiphased modes due to diffraction 
losses at the edges of the array. 

 

 
 

FIG. 2. Threshold gains Gthr for cophased and 

antiphased collective modes: a) Gthr vs the distance zco 

to the coupling mirror for a/σ = 4 and N = 10 for 
antiphased (1), cophased (2), and independent (3) 
generations of the laser array and b) Gthr vs the number 

of lasers N in the array for zco = zT/2 , a/σ = 4 (solid 

curve), and a/σ = 8 (dashed curve). 
 

The decrease of the generation threshold of the 
lowest and higher–order modes with increase of the 
number of lasers N in the array is shown in Fig. 2b. The 
increase of the threshold gain Gthr with increase of a/σ is 

due to the increasing losses in the coupling channel. 
For cophased and antiphased collective modes the 

absolute values of radiation amplitudes en in each laser 

coincide. These modes differ only in phase relations 
between the fields in the modules. The distribution of en 

over the channels is depicted in Fig. 3a. Due to 
uncompensated diffraction losses at the edges of array the 
field amplitude moduli in the peripheral lasers are smaller 
than those in the central ones. The phase shift ϕn between 

the phase of peripheral lasers and those located at the 
center of the array appears simultaneously (Fig. 3b). 
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FIG. 3. Radiation profile of collective generation for 
zco = zT/2, a/σ = 4, and Gthr = 0.067: a) distribution of 

the normalized modulus of the amplitude ⏐en⏐/ Is of 

the waveguide modes over the channels of the array for 
cophased and antiphased generation: linear case is for 
G0 = 0 (dashed line); nonlinear case is for G0 = 0.1 (1), 

0.3 (2), 0.5 (3), and 0.7 (4) and b) phase distribution ϕn 

of waveguide modes for cophased generation : linear 
case is for G0 = 0 (dashed line) and nonlinear case is 

for G0 = 0.7 (solid line). 

 
3. PROFILE OF THE OUTPUT RADIATION UNDER 

CONDITIONS OF GAIN SATURATION 

 

The selective method of setting up of the stationary 
regime16 is used to find the profile of the output radiation 
with allowance for the gain saturation in the modules. 
The main point of this method is that the iterative process 
for solving the nonlinear problem by the method of 
setting up of the stationary regime alternates with the 
analysis of the linear problem with "frozen" gain. To 
obtain the proper zeroth approximation for the iterative 
process, it is necessary to estimate the intensity of the 
chosen (cophased or antiphased) mode based on the 
condition of stationary generation. For Eq. (10) this 
condition has the form 

 
⏐γ⏐ = 1 . 

 
Let us assume that under conditions of gain saturation the 
output radiation profile of the collective generation is not 
deformed. Then following Eq. (13), Eq. (10) can be 
written down in the form 

E = γ0 U
∧

 E .  

 

Equation (9) allows us to obtain the value of ust for 

stationary generation 
γ0 R ust = 1. 

 

The value of ust thus derived determines the stationary 

intensity 
 

Ist = 
G0 + ln⏐γ0⏐

(1 – ⏐γ0⏐) (R 2 + ⏐γ0⏐)
 ⏐γ0⏐2 . (16) 

 

Such a value of the intensity is assumed to be attained in 
the channel with maximum amplitude en of the chosen 

collective mode. 
The iterative procedure in the method of setting up of 

the stationary regime is expressed as 
 

Ej+1 = U
∧

(⏐Ej
′⏐2) Ej

′ ;  Ej
′ = M

∧
Ej , (17) 

 

where j is the iteration number. In this case at each 

iteration Eq. (7) is solved for determining the matrix U
∧

. 
The profile vector EJ obtained in the last iteration is 

used for the solution of the linear eigenvalue problem with 
frozen gain 

 

γE = U
∧

(⏐EJ⏐2) M
∧

E . (18) 
 

If one of the eigenvectors E(l ), l = 1, ..., N of 
problem (18) coincides with EJ, then the stationary 

solution has been found by iteration. The eigenvalue 
modulus ⏐γ(l )⏐ corresponding to this vector is equal to 

unity. If for the rest of the modes ⏐γ(κ)⏐ < 1, k ≠ l, then 
the solution is considered to be stable. The difference 

⏐γ(l )⏐ – ⏐γ(κ)⏐ determines the margin of stability for the 
obtained solution E(l ). When there are modes with 

⏐γ(κ)⏐ > 1, the solution is unstable. The situation can 
arise in which the moduli of eigenvalues of several modes 
with the highest Q–factors are close in values. This 
means that the regime of multimode generation is feasible 
with such parameters of the system. 

In this case the total field saturating the gain must 
be considered as a superposition of fields of these modes. 

If none of the eigenvectors E(l ) of problem (18) 
coincides with EJ found by the iteration process, it is 

necessary to return to the method of setting up of the 
stationary regime taking the eigenvector of problem (18) 
closest in value to EJ as the zeroth approximation. 

The results of calculation of the nonlinear problem 
by the above–described procedure are shown in Fig. 3a in 
which the modulus of the field distribution over the 
channels is depicted for cophased and antiphased 
generation with different values of the gain G0. Here the 

distance to the coupling mirror is zco = zT/2. Similar to 

the linear case, with this location of the coupling mirror 
these distributions coincide by modulus and differ only in 
relations between the phases of the fields in lasers. 

It can be seen that with increase of the gain G0 the 

field amplitude increase in the channels slows down. The 
gain saturation manifests itself most strongly in the 
central channels of the array resulting in flattening of the 
collective radiation profile. At the same time, with 
increase of G0 the phase shift of the field at the edges of 

the array increases (Fig. 3b). 
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FIG. 4. Modulus of eigenvalues of cophased (c) and 
antiphased (a) collective modes vs the distance to the 
coupling mirror. Linear case (G0 = 0): a/σ = 4 (solid 

curve) and a/σ = 8 (dashed curve). Nonlinear case: 
G0 = 0.7 and a/σ = 4 (filled circles); G0 = 2 and a/σ = 8 

(empty circles). 
 

Depicted in Fig. 4 is the change in the relation between 
the losses of cophased and antiphased modes due to variation 
of the distance to the coupling mirror. The results were 
obtained by choosing the antiphased mode as the zeroth 
approximation for the iterative process of setting up of the 
stationary regime. It can be seen that ⏐γa⏐ for the antiphased 

mode is equal to unity for any zco. For a/σ = 4 for the 

cophased mode ⏐γc⏐ ≤ 1 and this mode attenuates everywhere 

except a small vicinity of zco = zT/2, where a two–mode 

regime of generation is feasible. For a/σ = 8 the variation in 
⏐γc⏐ is of complicated nature. Flattening of the radiation 

profile of collective generation does not affect the relation 
between the losses of cophased and antiphased modes. 

 
4. DIRECTIONAL PATTERN 

 
It is of interest to analyze the angular divergence of 

radiation in the regime of collective generation of the 
diffraction–coupled lasers. 

In the regime of antiphased generation the directional 
pattern has two side lobes at the angles θ = ±2λ/a. In the 
regime of cophased generation there is one central and two 
side lobes at the angles θ = ±λ/a. The amplitude of the side 
lobes depends on the ratio a/σ, and for a/σ = 4 it is about 
30% of the amplitude of the central lobe. 

In the regime of cophased generation the beamwidth 
Δθ of the central lobe is determined as half the angular 
distance between the neighboring zeros J(θ) and for N = 10 
and a/σ = 4 is equal to (Fig. 5)  

 

Δθ = 0.09θd , 
 

where θd = λ/πσ is the angular divergence of radiation of an 

individual module. As a/σ increases, the relative 
beamwidth Δθ decreases. 

To analyze the effect of the radiation profile in the 
regime of collective generation on the directional pattern, 
we show the zeroth maximum of field distribution in the far 
diffraction zone in the case of superposition of the radiation 
of cophased sources with equal amplitudes in Fig. 5. It can 
be seen that the decrease of the amplitude and the phase  

shift in the radiation profile of collective generation results 
in some broadening (by 20%) of the central lobe. As the 
analysis shows, the central lobe broadening is associated 
with the decrease of the radiation amplitude of the side 
lasers and in fact is independent of the phase shifts at the 
edges of the array. In this case flattening of the amplitude 
distribution has practically no effect on the radiation 
directional pattern. 

 

 
 
FIG. 5. Directional pattern of radiation for N = 10, 
a/σ = 4, and G0 = 0.7: cophased collective generation 

(solid curve) and cophased sources of equal amplitude 
(dashed curve). 
 

CONCLUSION 

 
1. In the laser array consisting of the finite number of 

modules the diffraction losses at the edges of the array result 
in the decrease of the field amplitude at the periphery and the 
appearance of the phase shift between the peripheral and 
central modules (ϕ ∼ 7°, N = 10, and a/σ = 4). 

2. The gain saturation leads to flattening of the 
radiation profile and the phase shift increase at the 
periphery of the array (ϕ ∼ 10°, N = 10, and a/σ = 4). 

3. The field amplitude decrease at the edges of the 
array increases the beamwidth of the central lobe as 
compared to the lobe for cophased sources of equal 
intensity. The phase shifts as well as flattening of amplitude 
distribution under conditions of gain saturation weakly 
affect the angular distribution of radiation in the far 
diffraction zone. 
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