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The impedance of the laser head of a 100 W copper–vapor laser is investigated. 
The laser head is of a coaxial geometry which is commonly used for longitudinally 
electrically excited, pulsed–gas lasers. 

The plasma conductivity is estimated using the available data on plasma 
parameters. The effect of radial gradient of the gas–temperature is considered. The 
tube inductance and capacitance are estimated and the combined effect is 
demonstrated. The skin–effect is considered. A method to calculate the exact influence 
of the skin–effect on the tube impedance is presented. 

The full calculation procedure is demonstrated for the case of a 100 W, 8 cm 
diameter, copper vapor laser. The consequent impedance is used to calculate the laser 
current under given excitation conditions. Very good agreement exists between the 
calculated and measured laser current. 

An optimal metal–sleeve diameter with respect to power matching is found. 
 

1. INTRODUCTION 
 
The copper vapor laser (CVL) is a pulsed–electric–

discharge pumped laser. Development of an excitation 
circuit that will efficiently transfer the electrical power 
into the plasma of CVL is one of the difficult tasks in 
high power CVL improvement. The reason for this is that 
to get efficient excitation, high power should be supplied 
during short intervals, of the order of 100 ns (Ref. 1). 
Typical values for the efficiency of the excitation circuit 
are 50%, i.e., only half of the power delivered from the 
power supply is finally deposited in the plasma. The 
residual power is absorbed by the circuit components, and 
results in their fast deterioration. Knowledge of the 
impedance of the laser and the parameters that affect is 
essential for optimization of the power matching. 

Most of the published works on this issue, model the 
laser impedance as a resistance in series with a constant 
inductance,2 or neglect the inductance altogether.3 In 
some of those works the parameters were estimated in a 
very simplified manner, in others they were deduced from 
the measured current waveform, but the actual empirical 
parameters can be provided only for a specific working 
system and are relevant only to the specified working 
conditions. Moreover, a recent work4 has shown that 
constant parameters cannot satisfactorily explain the 
behavior of our laser. 

Another approach to laser impedance is the physical 
approach. In this approach simulation of the plasma 
kinetics is utilized in order to calculate the time–varying 
plasma conductivity.5–7 This approach offers better 
insight into the physical properties of the laser. The main 
drawback of this method, from our point of view, is the 
time–consuming calculation required in order to solve a 
large number of kinetic equations. In some of the previous 
works radial uniformity and therefore constant inductance was 
assumed. This assumption is clearly not correct for a large–
bore CVL5 and in fact doubtful even for a small–bore one.8 

Effects regarding the laser tube capacitance are 
considered here for the first time. We present a method to 
calculate the laser tube inductance and capacitance and  

the combined effect using transmission line formulation. The 
plasma conductivity is assumed to be constant in time. The 
time dependence of the impedance caused by radial field 
penetration (skin–effect) is considered. 

 

 
 

FIG. 1. The structure of the laser head. 
 

The theoretical results are compared to measurements 
performed on a 100 W, 170 cm long, 8 cm – diameter CVL. 
The structure of the laser head is described in Fig. 1. The laser 
head is of coaxial geometry. An alumina lasing tube is 
surrounded by an alumina thermal insulator. This tube is 
enclosed in a quartz tube and electrically shielded by a metal 
sleeve. A detailed description of the laser, its excitation 
circuit, and working parameters is given elsewhere.1  

 
2. THEORETICAL CONSIDERATIONS 

 
A. The resistance of the laser head. The resistive 

element is the plasma itself. The plasma resistance is a result 
of collisions of the conducting electrons with plasma 
constituents. Estimation of the plasma conductivity is obtained 
in the following way9: The plasma conductivity is given by 
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σ = 
n

e
 e2

me ν
m

 , (1) 

 
where n

e is the electron number density, e and m
e
 are the 

electron charge and mass, and ν
m

 is the collision frequency 

for momentum transfer, ν
m
 is given by 

 
ν
m
 = N <ν> σ

m
 , (2) 

 
where N is the number density of atoms, <ν> is the average 
electron velocity and σ

m is the cross section for momentum 

transfer. The gas density is deduced from its pressure and 
temperature. The electron velocity is deduced from its 
energy. If there are more than one type of atoms in the gas 
the frequencies of collisions with different atoms are 
summed. 

The main constituents in our plasma are neon, 
hydrogen, and copper atoms. Typical number densities, 
momentum transfer cross sections, and the resulting 
collision frequencies with these atoms are listed in Table I. 
The atom density corresponds to gas temperature of 1880 K 
as the temperature near the tube wall. Electron energy of 
1 eV is assumed. 

 
TABLE I. Collision frequency with plasma ingredients.  

 

 
Atom 

Number 
density  
(cm–3) 

 Momentum transfer 
cross section (cm2) 

Collision 
frequency 
(sec–1) 

Neon 4×1017
 1.5×10–16 a

 3.6×109
 

Hydrogen 4×1015
 3×10–15 b

 7.2×108
 

Copper 8×1014
 6×10–16 c

 2.9×107
 

 
a From Ref. 10 
b From Ref. 16 
c From Ref. 17 
 
As can be seen from Table I the dominant processes are 

collisions with neon atoms. The electron energy in our 
plasma varies between 0.3 eV, before the excitation pulse, 
and 5 eV at the pulse maximum.5 The momentum transfer 
cross section for neon can be considered constant in this 
range and equals 1.5⋅10–16 cm2 (see Ref. 10). Therefore, 
only the dependence of conductivity on the neon and 
electron number densities, and on the average electron 
velocity is considered. Under constant gas pressure, the gas 
number density is inversely proportional to the gas 
temperature and is given by 

 

N = 3.536 ⋅ 1016 
273
T  P [ ]cm–3

Torr  , (3) 

 
where P is the gas pressure in Torr and T is the gas 
temperature in K. High radial temperature gradients exist in 
the CVL plasma. The gas temperature near the axis is more 
than twice the gas temperature near the wall.5 Thus, the 
conductivity is not uniform. Another factor, that influences 
the final resistance, is the skin–effect which restricts the 
current to part of the tube. In the final calculation we take 
into account these phenomena. 

 
B. The inductance of the laser head. Estimate of the 

tube inductance can be obtained assuming the electric 
current density in the plasma to be uniform. The inductance 
is then given by11 

L
uniform

 = 
μ0 l

2π
 { }1

4 + ln 
b
a  , (4) 

 
where μ

0
 is the permeability of free space, l is the tube 

length, a is the inner diameter of the lasing tube, and b is 
the inner diameter of the metal sleeve. From Eq. (4) one 
can see that the inductance decreases as the ratio b/a 
decreases. For this reason, the tendency was to minimize the 
outer sleeve diameter for a given tube diameter in order to 
minimize the laser inductive impedance, thereby increasing 
the current in the laser for a given applied voltage and 
improving power matching. This concept is not always 
correct as will be demonstrated later. 

The radial dependence of the conductivity and the 
skin–effect result in nonuniform current density. In this 
case Eq. (4) is not valid. If the current density profile has a 
ring shape, the inductance decreases and is given by4 

 

Lring = 
μ0 l

2π
 
⎩
⎨
⎧

⎭
⎬
⎫

ln 
b
a + 

c4

(a2 – c2)2 ln
a
c + 

a2 – 3c2

4(a2 – c2)
 , (5) 

 
where c is the inner diameter of the ring. The minimum 
value of the inductance is obtained, if the current flows in a 
thin layer near the wall (c → a). The inductance is then 
given by 
 

Lmin = 
μ0 l

2π
 ln 

b
a . (6) 

 
This is the case for a current that oscillates at a very high 
frequency. The current chooses a path with low inductance, 
because the inductive impedance rises with frequency. This 
is essentially the skin–effect. The inductance can also 
exceed over the value given by Eq. (4) if the current 
density near the tube axis is higher than the current density 
near the wall. This can occur as a result of increased 
conductivity caused by increased gas temperature near the 
axis. In the general case the inductance should be calculated 
using the time–dependent current density profile. 
 

C. Skin–effect. The skin–effect is obtained from the 
following Maxwell equations: 

 

Faraday's law   ∇×E = – 
∂B
∂t  . (7) 

 

Ampere's law   ∇×B = μ0 J + μ0 

∂

∂t (ε0 E) . (8) 

 

In our system 
∂

∂t (ε0 E) n J , therefore, the displacement 

current is neglected. By taking the curl of the first equation 
and substituting it into the second equation, we obtain 
 

∇×(∇×E) = – 
∂

∂t(∇×B) = – μ0 

∂J
∂t , (9) 

 
or 
 

∇(∇⋅E) – ∇2E = – μ0 
∂J
∂t . (10) 

 

Assuming the plasma quasineutrality (∇⋅E = 
ρ

ε0
 = 0), we 

finally have 
 



146   Atmos. Oceanic Opt.  /March  1993/  Vol. 6,  No. 3 P. Blau 
 

 

∇
2E = μ0 

∂J
∂t = μ0 

∂(σ E)
∂t  , (11) 

 
where σ is the plasma conductivity. 

This is a diffusion equation. In cylindrical coordinates, 
assuming axial and longitudinal symmetry, Eq. (11) reads 

 
∂2E
∂ r2 + 

1
r 
∂E
∂r  = μ0 

∂(σ E)
∂t  . (12) 

 
If we assume constant conductivity and solution of the form 

E = E(r)eixt, the equation for E(r) is 
 

∂2E(r)
∂r2  + 

1
r 
∂E(r)
∂r  = i ω μ0 σ E(r) . (13) 

 
Analytical solution exists under the assumption of uniform 
conductivity. In this case Eq. (13) can be written as 
follows: 

 
∂2E(x)

∂x2  + 
1
x 
∂E(x)
∂x  = iE(x) , (14) 

 
where x = r/δ and δ = (ωσμ0)

–1/2. 

Equation (14) is one of the forms of the Bessel 
equation and its solution is given by12

 

 

E(x) = E0 J0 
⎝
⎛

⎠
⎞

x e

3πi

4

___

 , (15) 
 

where E0 is a complex constant and J
0
 is the Bessel 

function of the zeroth order. The other solution is not 
physical, because it diverges as x → 0. The real and 

imaginary parts of J0 
⎝
⎛

⎠
⎞

x e

3πi

4

___

 are denoted by Ber(x) and 

Bei(x), where12 
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(x/2)4

2!2
 + 

(x/2)8
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 – ... = 
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 1
π
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0
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⎣
⎡

⎦
⎤x
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⎣
⎡

⎦
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2
 sinθ  dθ , (16) 

 

Bei(x) = (x/2)2 – 
(x/2)6

3!2
 + 

(x/2)10

5!2
 – ... = 

=
 1
π
 ⌡⌠

0

π
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⎣
⎡

⎦
⎤x

2
 sinθ  sin h 

⎣
⎡

⎦
⎤x

2
 sinθ  dθ . (17) 

 

The complex solution means, that both the magnitude and 
phase of the field are changing with the distance from the 
axis. To demonstrate this, the solution in polar 
representation is presented in Fig. 2. 

 

R(x) = Ber(x)2 + Bei(x)2 ,  Θ(x) = tan–1 ( )Bei(x)
Ber(x) . (18) 

 

In our system δ ≈ R/2, where R is the tube radius, hence x 
is approximately 2 near the tube wall. Thus, intensity of the 
field at the axis is about 20% less than of the field near the 
wall and the phase of the field near the wall precedes by 
about 1 rad the field phase at the axis. In our system the 
typical frequency is 2×107 rad/sec, thus, a delay of about  

40 ns exists between the field near the wall and the field at 
the axis. This is a well–known phenomenon in large–bore 
CVL's and is observed also in the laser radiation. 
 

 
 

FIG. 2. Field amplitude (solid line) and phase (dashed 
line) relative to amplitude and phase on axis. x is the 
distance from axis in units of δ = (ωσμ0)

–1/2. 
 

The field is given by 
 

E (r, t) = E0 
J0 
⎝
⎛

⎠
⎞

r/σ⋅e

3πi

4

___

 eixt
 . (19) 

 

The current density is then  
 

J (r, t) = E0⋅σ⋅J0 ⎝
⎛

⎠
⎞

r/σ⋅e

3πi

4

___

 eixt . (20) 
 

The total current is obtained by integration 
 

Itotal(t) = ⌡⌠
0

R

 
 2πJ(r, t) rdr =

2π

⎝
⎛

⎠
⎞

e

3πi

4

___

/δ
2
σE0 ⌡⌠

0

Y

 
 J0(y)y dy eixt, (21) 

where Y = 
R
δ
 e

3πi

4

___

. But for the Bessel function12 

 

⌡⌠
 
 x J0(x)dx = x J1(x) , (22) 

 

where J1(x) is the Bessel function of the first order. Thus, 

finally we have 
 

I
total

(t) = 
2πRδ

e

3πi

4

___
 σ E0 J1 ⎝

⎛
⎠
⎞R

δ  e

3πi

4

___

 eixt . (23) 

 

The impedance is defined as the relation between the 
applied voltage and the total current. To calculate it, we 
use the integral form of the Maxwell equations. 
 

⌡⌠
c

 
 �  E d l = – 

∂

∂t ⌡⌠
s

 
  B d s , (24) 

 

⌡⌠
c

 
 �  B d l = ⌡⌠

s

 
  μ0 J

 d s , (25) 

where ⌡⌠
c

 
 �  denotes integration over a closed path c, and ⌡⌠

S

 
 �  

denotes integration over the surface confined within this line.  



P. Blau Vol. 6,  No. 3 /March  1993/ Atmos. Oceanic Opt.  147 
 

 

The integration of Eq. (25) is performed over a circle of 
radius r around the laser axis, if r is larger than the tube 
radius and smaller than the metal–sleeve radius, the surface 
integral on the right–hand side of Eq. (25) yields the total 
laser current. Assuming axial symmetry for the magnetic 
field, we obtain 
 
2πrB(r) = μ0 Itotal . (26) 

 
The integration of Eq. (24) is performed over the path of 
minimum inductance, this is the path along the laser near 
the tube wall and back along the metal sleeve. The 
magnetic field penetrating through the closed surface is 
taken from Eq. (26), the end effect is neglected. The 
electric field in the metal sleeve is assumed to be zero, but 
we have to take into account the voltage applied to the 
laser tube. Thus, we obtain 
 

Ewall l – V = – 
∂

∂t ⌡
⌠

R
T

R
s

 

 
 

μ0 Itotal

2πr  d rl = 

μ0 l

2π
 ln 
⎝
⎛

⎠
⎞

R
s

R
T

 
∂Itotal

∂t  , (27) 

 
where V is the applied voltage, Ewall is the electric field 

near the tube wall, R
T
 and R

s
 are the tube and sleeve radii. 

The current density near the wall is Jwall = σ⋅Ewall. The 

coefficient on the right–hand side of Eq. (27) is what was 
regarded above (Eq. 6) as Lmin, the minimum tube 

inductance. Therefore, we can write 
 

V = 
Jwall l

s  + Lmin 
∂Itotal

∂t  (28) 

 
or for harmonic current 
 

V = 
Jwall⋅l

σ
 + i ω Lmin Itotal . (29) 

 
The impedance is then given by 
 

Z = 
V

Itotal
 = 

Jwall

Itotal
 
l
σ
 + i ω Lmin . (30) 

 
Using the explicit expression for the total current and the 
field near the wall from above we have 
 

Z = 

J0 ⎝
⎛

⎠
⎞R

T

δ
 e

3πi

4

___

 e

3πi

4

___

2πR
T
δJ1 ⎝

⎛
⎠
⎞RT

δ
 e

3πi

4

___
 
1
σ
 + i ω 

l μ0

2π
 ln 

⎝
⎛

⎠
⎞R

s

R
T

 . (31) 

 
The real part of the impedance is the total resistance and 
the imaginary part is the inductive impedance, i.e., ω⋅L.  

Figure 3 shows the resistance and inductance as 
functions of frequency using typical parameters of our 
system. The resistance increases with frequency, because the 
skin depth decreases and the current is restricted to smaller 
section of the tube. The inductance in the limit of high 
frequency converges to Lmin as was expected. For low 

frequency the inductance converges to the value of Luniform 

as is calculated assuming current density (Eq. 4), because 
the skin depth is larger than the tube radius. 
 

 
 

FIG. 3. Resistance and iductance versus frequency 
calculated from Eq. (31), i.e., assuming uniform 
conductivity, with typical parameters for our laser. 
 

The above calculation is correct, if the conductivity is 
uniform. More realistic calculations require the use of the 
radial dependent conductivity. In this case, different 
equation for the radial dependence of the electric field is 

 

d2E(r)
d r2  + 

1
r 

d E(r)
dr  = i ω μ0σ(r) E(r) , (32) 

 

where σ(r) is the radial dependent conductivity. The general 
solution (omitting a constant factor that drops later) is 
given by the following integral: 
 

E(r) = iωμ0 ⌡
⌠

0

r

 

 

1
r1

 
⎣
⎡

 

 ⌡
⌠

0

r1

 

 
r2 σ(r) E(r)d

⎦
⎤

 

 

r2  d r1 . (33) 

 

This can be verified by doubly differentiating Eq. (33). The 
equation is solved numerically using the radial dependent 
conductivity in order to find E(r). The total current Itotal is 

calculated by integration 
 

Itotal

eiωt  = 
⌡
⌠

0

R
T

 

 
E (r) σ (r) 2πr d r . (34) 

 

The current density near the wall is Jwall = E (R
T
) σ(R

T
) eixt 

and the impedance is given by 
 

Z = i ω Lmin + 
Iwall

Itotal
 

1
σ(R

T
)
 = i ω Lmin + 

E(R
T
) l

⌡⌠
0

R
T

 

 
E(r) σ(r) 2πrd r

 .  

(35) 
 

To demonstrate the effect of nonuniform conductivity, 
Table II shows the values of total resistance and inductance 
calculated for our system in three ways. The first and last 
lines are calculated assuming uniform conductivity but with 
different values of the conductivity. At higher conductivity 
the resistance is, of course, lower. The inductance is lower 
because of the decrease in skin depth. The central line is 
calculated assuming radial (gas temperature) dependent 
conductivity. The resistance in this case is lower than in the 
other two due to the increase in conductivity. The 
inductance is higher than in the other two cases due to the 
increase in current density in the high temperature and high 
conductivity region near the tube axis, the region with 
higher inductance.  
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TABLE II. Calculated laser resistance and inductance. 
 

Method
 
 

Conductivity 
near wall (Ω–

1⋅cm–1) 

Resistance 
(Ω) 

Inductanc
e 

(nH) 

Uniform 
conductivity 

 
1 

 
3.83 

 
339 

Temperature 
dependent 
conductivity 

 
 
1 

 
 

2.53 

 
 

352 
Uniform 
conductivity 

 
1.5 

 
2.74 

 
335 

 
The first and third lines in the table are calculated 

assuming that the plasma conductivity is uniform and equals 
the conductivity near the wall using Eq. (31) with typical 
parameters from our laser. The second line is calculated 
using Eq. (35) and assuming that the conductivity depends 
on the gas temperature and is therefore not uniform but 
radial dependent. 

 
D. The capacitance of the laser head. Radial electric 

field exists in the laser head only on the quartz tube and the 
spacing between this tube and metal sleeve. The alumina 
components are not isolated from the plasma and are 
conducting at the working temperature (for description of 
the laser head structure refer to Sec. 1). This implies that 
capacitance exists only on the first two components. The 
capacitance of two coaxial tubes is given by11  

 

Ctube = 
2πε l

ln (r2/r1) , (36) 

 
where ε is the dielectric constant of the medium between 
them, l is the tubes length, r2 and r1 are the radii of the 
outer and inner tube. The capacitance increases as the ratio 
r2/r1 decreases and the dielectric constant of the insulating 
medium increases. The capacitances on the quartz tube and 
on the spacing between it and the sleeve should be regarded 
as connected in series. 

 
E. The total impedance. To evaluate the combined 

effect of the resistance, inductance, and capacitance, the 
problem of the impedance of a short transmission line with 
losses should be solved, assuming a transmission line with 
the following parameters per unit length: resistance R, 
inductance L, and capacitance C. The equivalent circuit is 
shown in Fig. 4. 

 

 
 
FIG. 4. Equivalent circuit for a transmission line with 
losses. The impedance of a line l + dl units long can be 
expressed as a function of the impedance of a line l units 
long and the resistance, inductance, and capacitance per 
unit length. 
 

If the impedance of a line of length l is Z
l
, the 

impedance of a line of length l + dl is 
 

Z
l+dl

 = R dl + iω L dl + 
⎝
⎛

⎠
⎞iω C dl + 

1
Z

l

–1

 . (37) 

 

The derivative of Z with respect to l is defined as 
 

dZ
d l = lim

dl→0

 ⎣
⎡

⎦
⎤Z

l+dl
 – Z

l

dl  = 

 

= lim
dl→0

 

⎣
⎢
⎡

⎦
⎥
⎤

 

Rdl + iω L dl + Z
l
 
1 – iω C dl Zl
1 + (ω C dl Z

l
)2 – Z

l

dl   . (38) 

 
As a result we obtain the following differential 

equation for the impedance:  
 

dZ
d l = R + i ω L – i ω C⋅Z2 . (39) 

 
The general solution of this equation, with a boundary 

condition Z(l0) = η, is13 
 
Z(l) = 
 

=
η – iωC(R + iωL) + (R + iωL) tan( – iωC(R + iωL)⋅(l – l0))

– iωC(R + iωL) + iωC⋅ηtan( – iωC(R + iωL)⋅(l – l0))
. 

 (40) 
 
For infinitely long line the solution is simply 
 

Z = 
R + i ω L

i ω C  , (41) 

 
which is the classical value of transmission line impedance. 
For the boundary condition Z(0) = 0, which is our case, the 
solution is 
 

Z(l) = – 
R + i ω L

i ω C  tan (l – i ω C (R + i ω L)). (42) 

 

 
 

FIG. 5. The real (solid line) and imaginary (dashed line) 
parts of the calculated laser impedance with and without 
considering the capacitance and transmission–line effect.  
 

To demonstrate the effect of the transmission line (or 
parasitic capacitance), Fig. 5 shows the real and imaginary 
parts of the impedance obtained for the parameters of our laser 
with and without consideration of the capacitance. When the  
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capacitance is considered, resonance phenomenon occurs. At 
the resonance frequency the imaginary impedance vanishes. 
Below this frequency both parts of the impedance increase. 
Beyond this frequency the imaginary part changes sign what 
means the change from inductive to capacitive behavior. 
 

3. APPLICATION TO COPPER VAPOR LASERS 
 

A. System parameters and theoretical results. The neon 
pressure in our laser is 76 Torr. The gas temperature is 1800 K 
near the tube walls and about 4300 K along its axis.14 

 

The time averaged electron number density measured 
at the laser axis is 1.3×1013 cm–3 (see Ref. 14). A 
maximum electron density of 4×1013 cm–3 at about 1 μsec 
after the excitation pulse was obtained in a model of  
a similar laser.5 The electron energy obtained in this 
model is 0.3 eV before the excitation pulse and 5 eV  
at its maximum. Table III demonstrates some conductivity 
values obtained using these parameters. As can be  
seen the conductivity value can differ by about an  
order of magnitude for different time and points in the 
tube. 

 
TABLE III. Estimated plasma conductivity from various estimations of plasma parameters. The 
parameters correspond to different time and points in the plasma. 

 

 Location 
 Time Gas temperature 

(K) 
Electron density 

(1013cm–3) 
Electron energy  

(eV) 
Conductivity 
(Ω–1⋅cm–1) 

Near wall Before pulse 1800a
 1.5a 0.3b

 2.1 

Near wall During the pulse 1800a
 1.5a

 5b
 0.52 

On axis During the pulse 4300a
 1.5a

 5b
 1.2 

On axis After pulse 4300a
 4b

 1b
 7.4 

a
 

From Ref. 14;  b From Ref. 5. 
 

We take into account the radial dependence of the 
conductivity resulting from the gas temperature profile. For 
this purpose the gas temperature is calculated with the 
assumption of uniform power deposition and given by5 
 

T(r) = 
⎣
⎡

⎦
⎤T w 

m+1 + 
P⋅(m + 1)

4λ0
 (R2 – r2)

1

1+m

____

 , (43) 

 
where Tw is the wall temperature (1800 K in our laser), P is 

the power deposited per unit volume (about 1.5 W⋅cm–3), R 
is the tube radius (4 cm), and λ0 and m are constants 

related to the thermal conductivity of the gas. The thermal 
conductivity is given by15 
 

λ = λ0 T g
 m , (44) 

 
where Tg is the gas temperature. For neon  

λ0 = 9.6⋅10–6 [ ]
W

K⋅cm
 and m = 0.685. The radial dependence 

of the electric conductivity resulting from radial gradients of 
the electron number density and velocity was not accounted 
because of lack of data. 

The best agreement between the calculated and 
measured laser current was reached when assuming plasma 
conductivity of 60 (Ω⋅m)–1 near the tube wall. This value 
of conductivity corresponds to gas temperature of 1800 K, 
the actual wall temperature, to electron density of 
1.3⋅1013 cm–3, the actual measured average electron 
density, and to the electron energy of 3 eV, 60% of the 
maximum value obtained in Ref. 5. 

The estimated parameters for our tube are: 
Minimum inductance, using Eq. (6): Lmin = 238 nH.  

Inductance assuming uniform current, using Eq. (4): 
Luniform = 323 nH. 

Total capacitance, using Eq. (36) and adding the 
quartz tube capacitance and the capacitance of the spacing 
between quartz and sleeve tubes in series: 0.63 nF. 

Figure 5 shows the real and imaginary parts of the 
impedance as obtained using the full calculation procedure. 

 

B. Experimental procedure. In order to examine the 
theoretical results, measurement of the impedance which is 
isolated from influence of other circuit component is required. 
A method that meets this demand and also the bandwidth 
demands of the measurement was described by Druckmann.4 
The method utilizes measurement of the current partition 
between the laser head and the capacitor that is connected in 
parallel to it in a standard circuit (peaking capacitor),1 see 
Fig. 6. The currents are measured with the W series current–
viewing–resistors from T&M Research Products. Those 
resistors are 0.2% accurate and have a bandwidth of 400 MHz. 
The signals are sampled with a TEK 11201, 400 MHz 
digitizing oscilloscope and transmitted to a computer for 
processing. 

 
 

FIG. 6. The impedance measurement circuit. The total 
current that arrives from the excitation circuit is 
measured and also the part of it that flows through the 
laser. The time (frequency) dependent current 
partitioning factor is a function of the laser impedance. 

 
The parallel capacitor is 4 nF, UHV–11A ceramic 

capacitor from TDK. Its capacity has low voltage and 
frequency dependence but high temperature dependence. 
The temperature of the capacitor was measured and the 
capacitance was evaluated according to the capacitor data–
sheet. 

Figure 7 shows typical total excitation current and the 
laser current signals. The voltage is calculated from the 
charge on the peaking capacitor which is obtained by 
integrating the net current through it. 
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FIG. 7. Typical total (Im) and laser (Il) measured 
currents. The voltage (V) is calculated by integrating the 
net current through the capacitor. 

 

 
 

FIG. 8. Measured (solid line) and calculated ((dotted line) 
laser current. 
 

Figure 8 demonstrates the agreement between measured 
and calculated laser current. The theoretical result is obtained 
as follows. The full, frequency dependent laser impedance is 
calculated as above. The partitioning factor between the laser 
and the total excitation current is 

 

Il

Iex
 = 

ZlCZc

Zl
 = 

Zc

Zl + Zc

 , (45) 

 

where Zl is the laser impedance and Zc is the impedance of the 

peaking capacitor. The frequency spectrum of the measured 
total current is obtained using fast Fourier transform and is 
multiplied by the partitioning factor to get the frequency 
spectrum of the laser current. Inverse fast Fourier transform is 
used to obtain the laser current. 
 

 
 

FIG.
 
9. Laser current calculated with different 

conductivity near the wall. Solid line – 120 (Ω m)–1, 
dotted line – 60 (Ω m)–1, and dashed line – 30 (Ω m)–1.  

The sensitivity of the results to the value of the 
conductivity near the wall is demonstrated in Fig. 9. The 
same effect of the laser current will be observed if the gas 
pressure is varied. 

 

4. DISCUSSION AND CONCLUSION 
 

Good agreement exists between the measured and 
calculated current waveforms. The peak current value is 
sensitive to the exact value of the conductivity which is 
assumed. Time dependence of the conductivity was not 
considered. A good agreement with measurements proves 
that in our case the time dependence of the laser 
impedance is dominated by the field penetration process. 
This is connected with the significance of the inductance 
in the total impedance. The conductivity value of 
60 (Ω⋅m)–1, which gives the optimal agreement with 
measurements, implies that the electron energy changes 
rapidly with the applied field. The electron number 
density, on the other hand, changes more slowly. The 
main disagreement between measurements and 
calculations is in the width of the first peak. The width 
of the measured current is somewhat wider than the 
predicted one. This implies that the true inductance is 
somewhat higher than the predicted one. This can be 
explained as follows: we have assumed uniform electron 
number density. In fact, during the time interval between 
excitation pulses the recombination between electrons and 
ions occurs. This process is faster near the wall than on 
the axis, therefore at the beginning of the pulse the 
electron density near the wall (and thus the conductivity) 
is much lower. To demonstrate the effect of this on the 
resulting current, Fig. 10 shows the result of a 
calculation that assumes current to be flowing in a region 
of only 7 cm in diameter. The agreement with the 
measured current is much better in this case.  

 

 
 

FIG. 10. Measured laser current (dotted line) and laser 
current calculated assuming that the current flows only in 
a region of 7 cm in diameter. 
 

Another important effect that can be obtained with 
the above calculation is the effect of modifications in the 
sleeve diameter. Figure 11 shows the current obtained for 
different sleeve diameters. For a narrower sleeve the 
current peak increases because of the decrease in the 
inductance, but there is an optimal sleeve diameter below 
which the current pulse is smeared and its peak decreases. 
This is a result of the increase in capacitance and it 
occurs also when increasing the dielectric constant of the 
medium between the quartz tube and the metal sleeve. 
This phenomenon was also observed experimentally. 
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FIG.
 
11. Calculated laser current with different metal 

sleeve diameters. Dotted line – 40 cm ,  
solid line – 20 cm , and dashed line – 14.5 cm diameter. 
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