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In this paper we present analysis of the mean intensity, relative variance, and 
scales of temporal and spatial correlations of the intensity fluctuations of focused and 
collimated beams in the far zone of diffraction, when propagating through the 
turbulent atmosphere along slant and vertical paths whose lengths essentially exceed 
the thickness of a distorting layer. 

It is shown that for such paths the time scale of correlation of the intensity 
fluctuations is identically characterized by the time required for the atmospheric 
inhomogeneities to travel across the initial laser beam cross section, irregardless of the 
level of turbulent distortions in the layer. The spatial scale of correlations coincides 
with diffraction size of the beam in the observation plane, if the amplitude 
fluctuations of the optical radiation within the layer are small compared with the 
phase ones, otherwise it is proportional to the radius of correlation of the field at the 
exit from the distorting layer. 

It is also shown in this paper that maximum value of the mean intensity, if 
determined in the coordinate system with the origin at the energy center of gravity of 
a beam, can essentially exceed the mean intensity due to random wanderings. 

 
This paper is devoted to the study of laser radiation 

propagation through the turbulent atmosphere along vertical 
and slant paths whose lengths essentially exceed the 
thickness of a distorting layer. By mean intensity of a laser 
beam we understand, in this paper, the intensity averaged 
over its instantaneous cross section in the coordinate system 
whose origin coincides with the instantaneous energy center 
of gravity of the beam. This allows only the intensity 
variations due to diffraction and scattering on small scale 
turbulent inhomogeneities of the refractive index of air to 
be separated out for study. Variance, spatial and temporal 
correlation of the optical radiation intensity are also 
analyzed for the case of propagation along inhomogeneous 
paths.  

Rigorous expression for complex amplitude U(z, ρ, t) 
wave field propagating in a medium with large–scale 

fluctuations of its refractive index n~ (z, ρ, t) can be 
represented in the form of the path integral1–4 
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where z is the length of the path; ρ is the two–dimensional 
radius–vector in the plane perpendicular to the axis of 
propagation, t is time, κ = 2π/λ, λ is the radiation 
wavelength, and U

0
(ρ) is the complex amplitude of the 

wave field in the plane z′ = 0. However, direct use of 
Eq. (1) for making calculations in problems of laser 
radiation propagation through the turbulent atmosphere is 
accompanied by a lot of difficulties, while, at the same 
time, it can be essentially simplified, if it is used for solving 
the problem under study. 

Let a source of radiation be on the Earth's surface 
while a receiver of radiation be at a sufficiently large 
distance from the effective distorting layer of the 
atmosphere. In this case it would be convenient to divide 
the propagation path into two portions, that is, the portions 
[0, z

0
] and [z

0
, z]. Let us also assume that the wave field 

undergoes the main distortions, due to the turbulent 

distortions of the refractive index n~, only within the 
atmospheric layer from the Earth's surface to the altitude 

z
0
, and propagates practically in vacuum (n~ ≈ 0) in the 

second portion of the path. According to models5 of vertical 
profiles of the structure characteristic of the refractive index 
Cn

2 the effective length of the distorting layer of the 

atmosphere is defined as follows:  
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and for the case of propagation along vertical paths it is about 
500–1000 m. In the case of not diverging and not very narrow 
beams the condition ka2/z

0
 . 1 is valid at the distance z

0
, 

that is, the wave propagating along this path is practically 
plane. Note that here a is the initial radius of the beam. The 
propagation through the layer [0, z

0
] is accompanied by the 

distortions of the wave amplitude A(z
0
, ρ) = ⏐U(z

0
, ρ)⏐ and 

of the phase s(z
0
, ρ) = i ln(U(z

0
, ρ)/⏐U(z

0
, ρ)⏐). In the case 

of vertical paths and when z′ = z
0
 we usually have conditions 

under which the following relationship for relative variance of 
the intensity is valid, σi

2 = <I2>/<I>2 – 1 n 1. For this reason 

it would be convenient for further analysis to introduce some 
parameters characterizing the level of amplitude and phase 
fluctuations of a plane wave (κa2/z

0
 . 1) occurring inside the 

distorting layer which could be calculated using the first 
approximation of the smooth perturbation method6 and 
assuming that Cn

2(z′) = Cn
2(0) = const and z′ ∈ [0, z

0
], like the 

relative variance of the intensity 
 

β2
0
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0
, 0)>/<A2(z

0
, 0)>2 – 1 = 1.24 Ñ2

n(0) κ 7/6
 z

0
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and the structure function of phase, 
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Taking into account the condition that 

 

z . z
0 , (5) 

 

let us formally direct the path length in the last exponent 
of Eq. (1) to infinity (z → ∞). This allows the integration 
over all variables bj to be done what, in turn, results in the 

following formula: 
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This formula for the wave field is known as the phase 
screen approximation.6–11 Note that condition (5) is 
sufficient for a justified use of formula (6) when analyzing 
the mean intensity <I>.  

Mean intensity <I> = <UU*>. Let us now derive an 
expression describing the mean intensity <I> on the beam 
axis (ρ = 0) and at the center of gravity of the intensity 
distribution 
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In doing so let us assume the beam to be Gaussian in 

the emission plane, that is, 
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where F is the focal length. 
From Eqs. (6)–(8) we have 
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Assuming also that components of the vector ρc obey 

normal distribution law from Eqs. (6), (8), and (9) after 
averaging, we obtain  
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At α = 0 this formula describes the mean intensity at a 
point on the beam propagation axis (ρ = 0), while at α = 1 
it represents the average of instantaneous intensity values at 
the beam center of gravity; the function Φn(z′, κ, 0) is the 

three–dimensional spectrum of the refractive index 
fluctuations. In the case of Kolmogorov spectrum (see 
Refs. 6 and 12–14) Φn(z′, κ, 0) = 0.132Cn

2(z′)⏐κ⏐–11/3 and 

from Eq. (10), we obtain 
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where 
1
F

1
(a, b, c) is the confluent hypergeometric function. 

In order to describe the intensity decrease due to 
turbulence let us introduce the factor  

 

η
a
 = <I

a
(z)> / I

D
(z) , (12) 

where 
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I
D
(z) = A

0
2 (κa2/ z)2/[ ]1 + (1 – z/F)2 (κa2/z)2   

 
is the intensity of radiation on the beam axis in the absence 
of turbulence on the propagation path (D = 0). Using polar 
system of coordinates for the integration variables in 
Eq. (11) one can reduce the estimation of η

0
 value to 

calculation of a single integral and of the value η
1
 to 

calculation of a triple integral. 
 

 

 
 

FIG. 1. Dependences of the factors η
0
 and η

1
 (a), as well 

as of their ratio η
1
/η

0 (b) describing a decrease of the 

beam intensity due to atmospheric turbulence on the 
parameter D. 

 
Figure 1a shows the dependences of η

0
 and η

1
 on the 

parameter D calculated assuming that (κa2/z)(1 – z/F) = 0. 
Figure 1b clearly demonstrates the difference between long– 
and short–exposure mean intensities, <I

0
>(η

0
) and <I

1
>(η

1
), at 

maxima of their distributions under different turbulent 
conditions of propagation characterized by the parameter D. 
Thus at D g 6 the intensity <I

1
> exceeds the value of <I

0
> by 

more than 4 times. This means that the effective beamwidth 
determined by averaging instantaneous intensity distributions 
over sufficiently long time is, on the average, nearly twice as 
large as the instantaneous one. The ratio η

1
/η

0
 (or <I

1
>/<I

0
>) 

then slowly falls down to unity with increasing D.  
Intensity fluctuations. In contrast to the mean 

intensity calculations the calculations of intensity 
fluctuations need some extra condition, apart from 
condition (5), in order to make use of the phase screen 
approximation (formula (6)). Asymptotic analysis of the 
expression for σ

i
2 obtained from Eq. (1), carried out for the 

cases of weak and strong intensity fluctuations, has shown 
that for a focused beam or in the far zone of diffraction 
((κa2/z)(1 – z/F g 0) the variance σi

2 is a function of two 

parameters β
0
 and D. Under condition that  

 

(β2
0
)12/5

 n D6/5 (13) 
 

this expression coincides with the formula for σi
2 obtained 

using relation (6). 
Thus, we can state that the phase screen 

approximation is applicable to analysis of the intensity 
fluctuations if the phase distortions of a beam occurring 
inside the layer [0, z

0
] essentially exceed the amplitude 

ones. The fluctuations of the beam intensity in the plane 
z′ = z

0
 can be rather strong (β

0
2 > 1) in this case. One can 

surely assume that for vertical and slightly slant paths 
condition (13) is satisfied since practically always we have 

conditions when β
0
2 < 1 and β

0
2 > 1 and κa2/z

0
 > 1. 

In the case of the Kolmogorov spectrum of the 
refractive index fluctuations one can easily obtain, using the 
Taylor hypothesis of frozen turbulence12–14 from Eqs. (6) 
and (8) the following expression for the second moment of 
intensity: 
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where <V
⊥
> is transverse, with respect to the beam axis, 

component of the wind velocity. 
Consider now relative variance of the intensity σi

2 on the 

beam axis (ρ = 0). Under condition that (κa2/z)(1 – 
– z/F) = 0 the value σi

2 is governed solely by the parameter 

D. Moreover, if D n 1 or D . 1 it is possible, using the 
known techniques,12–14 to derive asymptotic formulas for σi

2 

from Eq. (14). Thus, in the case of weak intensity fluctuations 
(D n 1) (Ref. 14) 
 

σ2
I≈2

10/3
 [(1/2) Γ2 (8/3) + (1/2) Γ2 (11/6)–(3/4)8/3Γ2(11/6)× 

 

× 
2 
F

1 
(11/6, 11/6 ; 1; 1/4)] D2≈ 1.58 D2, (15) 

 

and for strong ones (D . 1) (Ref. 16) 
 

σ2
I≈1 +(13/12)216/15

 (7/6)2[Γ2
 (7/5)/Γ2

 (6/5)]Γ2 (5/3)D–2/5≈ 
 

≈ 1 + 2.6 D–2/5, (16) 
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where Γ(a) is gamma function; 
2
F

1
(a, b; c; d) is Gauss 

hypergeometric function. 
 

 
 

FIG. 2. Relative variance of the intensity fluctuations 
calculated by the Monte Carlo method (curve 1), by 
formulas (15) and (16) (curves 2 and 3, respectively), 
and using relation (17) (dashed line). 
 

To calculate the sixfold integral in Eq. (14) at 
arbitrary values of the parameter D we used the Monte 
Carlo method.14,15 Figure 2 shows data of numerical 
calculations of relative variance σi

2 for the case of 

(κa2/z)(1 – z/F) = 0 (curve 1). Curves 2 and 3 stand for 
calculations by formulas (15) and (16), respectively. It can 
be seen from this figure that the used asymptotics provide 
the accuracy of 15% in the regions D < 0.5 (formula (15)) 
and D > 10 (formula (16)). Based on the results obtained 
by the Monte Carlo method (curve 1) we have constructed 
an empirical formula for σi

2 
 

σ 
2
I = 

1 + D–2/5[2.6 + 23.5/D]

1
 
+ D–2/5 [ ]70.1

(1 + D/2) D + 
14.9

D3

  (17) 

 

which yields a maximum error of 3% and the results 
coinciding with those obtained by asymptotics (15) at 
D n 1 and (16) at D . 1. The curve σ

i
2(D) calculated by 

formula (17) is shown in Fig. 2 by dashed line. 
From Eq. (14) it follows that in contrast to σ

i
2 the 

radius of spatial correlation r
1
 of intensity determined from 

the fall off of the correlation coefficient down to e–1 level 
both for focused and collimated beams in the far zone of 
diffraction (κa2 n z) depends, in the region behind the 
phase screen, on the path's length z and is determined by 
the diffraction radius of the beam16 
 

rI ≈ 2 z/(κ a) . (18) 

 

Analysis of temporal correlation of the intensity can be 
significantly simplified if the approximation  

1.46 κ
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⊥
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≈ 

≈ (D/2)⏐R+ υ
eff τ/a⏐5/3  (19) 

is used, where υ
eff

 is the vector of effective velocity of 

transfer of the turbulent inhomogeneities of the refractive 
index across the beam cross section. Absolute value of this 
vector is determined by the formula 
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while its direction is determined by the direction of near–
ground wind and by the direction of beam propagation. 

By using Eqs. (14) and (19) we have calculated by the 
Monte Carlo method the coefficient of temporal correlation 
of the intensity 
 

K(τ) = (<I(t) I(t + τ)> – <I>2)/(<I 
2> – <I>2) (21) 

 

for different values of the parameter D assuming that 
(κa2/z) × (1 – z/F) = 0. It can be seen from this figure 
that the time of the intensity correlation τ

c
 defined as the 

width of the function K(τ) at the level e–1 is of the order of 
time required for the refractive index inhomogeneities to 
travel across the beam τ

0
 = 2a/⏐υ

eff
⏐. Thus at D n 1 the 

value τ
c
 ≈ 3 τ

0
 and at D . 1 τ

c
 ≈ τ

0
. 

 

 
 

FIG. 3. Coefficient of time correlation of the intensity 
calculated for different D values: D = 0.2 (curve 1), 
D = 2.0 (curve 2), and D = 20 (curve 3). 
 

An increase of the zenith angle θ of a beam propagation 
direction results in an increase of the thickness z

0
 of the 

disturbing layer and, hence, in an increase of the intensity 
fluctuations β0

2. As a consequence it happens so that starting 

with certain value of θ condition (13) may be violated. In this 
case the calculations of strong intensity fluctuations may be 
done using formula (1) according to the technique described in 
Ref. 4. In the limiting case of (β

0

2)12/5 . D6/5 and for 

(κa2/z)(1 – z/F) ≈ 0 the variance σ2 has the form 
 

σ 
2
I ≈ 1 + 0.33 β 

–4/5
0

. (22) 
 

It can be seen from this formula that intensity fluctuations in 
the plane z' = z are entirely determined by the distortions of  
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the wave amplitude occurring within the interval [0, z
0
] and 

do not depend on the initial size a of the beam. 
From Eq. (1) and under condition that (κa2/z)(1 – 

– z/F) ≈ 0 for the radius of spatial correlation of the beam 
intensity one can obtain the following approximate expression: 
 

rI ≈ 2 
z
κa / 1 + 211/5 (β2

0
)12/5

 / D6/5
 . (23) 

 

One can easily see that under condition (13) formulas (23) 
and (18) coincide. However, if (β

0

2)12/5
 . D6/5, the 

correlation radius is  

r
I ≈ 

1

23/5 
z
κa 

D3/5

(β2
0
)6/5 ∼ 

z
z
0
 ρc (24) 

and does not depend on the initial beam radius a, being 
entirely determined by the radius of spatial coherence of the 
beam at the end (z′ = z

0
) of the distorting layer, that is, by 

ρc ∼ [1.45κ
2 Cn

2(0) z
0
]–3/5. 

Analysis of the coefficient of time correlation of the 
beam intensity K(τ), we have done in the region of strong 
intensity fluctuations, shows that in contrast to the variance 
σi

2 and the radius rI of spatial correlation of the intensity 

the time scale of its correlation does not depend on the 
relation between β

0

2 and D parameters under condition that 

(κa2/z)(1 – z/F) n 1, being determined only by the time 
required for the turbulent inhomogeneities to travel across 
the beam, that is, 
 

τ
c
 ≈ τ

0
 . (25) 

 

The matter is that at a large distance (z . z
0
) the 

intensity at a point ρ is determined, because of the wave 
diffraction on the interval [z

0
, z], by a superposition of the 

partial waves' fields from practically the entire wave surface 
at the exit from the distorting layer. Therefore, an essential 
variation of the intensity in the plane z′ = z occurs only if 
the beam field at the end of this layer is fully changed, 
what, in turn, happens in every τ

0
 time interval. 

The above analysis adapts, in certain sense, the results 
of classical studies1,2,17 for application to description of  

laser beam propagation along real atmospheric paths what 
can become practicable in a number of applied problems. 
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