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The authors study the kinetics of nonstationary energy exchange between 
reconstructing pulses and reconstructed waves in a resonance dynamic hologram. It is 
shown that the character of energy exchange between a reference beam and 
reconstructed waves essentially depends on the pulse areas of object beam and 
reconstructing pulse, their durations, and time lag between them, as well as on the 
stability of reference wave for small–scale disturbances of its transverse structure. It 
is found in particular that phase information about the object is distorted due to 
small–scale instability of the reconstructing pulses, even with no high spatial 
frequencies in the object spectrum. 

 

1. INTRODUCTION 
 
Prediction of phonon echo by U.Kh. Kopvillem and 

V.R. Nagibarov in 1963 (see Ref. 1) was of great fundamental 
and applied value. On the one hand, it boosted the 
development of such a lead as physics of coherent transient 
processes. On the other hand, the echo–phenomena are 

actively applied to coherent nonstationary spectroscopy
2–5

 and 

resonance dynamic holography.
6–8

 These are especially urgent 
problems now in connection with the development of real–
time data processing systems as well as computers with optical 

memory.
9
 This is favored by fast response and large memory 

capacity of the resonance dynamic holograms
10
 (RDH's). 

Another lead is wavefront correction in high–power light 
pulses, in particular, wavefront reproduction (WFR) and 
phase conjugation (PC). Various nonlinear processes are 
employed to attain these ends including the four–wave 

interaction
11
 (FWI). Its advantage is feasibility of the PC with 

simultaneous amplification of the phase conjugate signal. 
Photorefractive crystals as media, in which the dynamic 

holograms are recorded, are of considerable current use,
12
 both 

the transmission and reflection holograms can be recorded in 

them depending on the experimental configuration.
13
 To 

improve the efficiency of the PC, the intracavity FWI is often 

employed.
13
 In a number of cases, however, resonant media 

appear to be more promising to record the dynamic holograms 
(DH's). They possess much stronger nonlinearity resulting 
in high energy sensitivity of such media. Thus for the 
DH's recorded in alkali metal vapor the sensitivity 

reaches 10
–10

 – 10
–9

 J/cm
2
 (see Refs. 14–16). The 

response of the resonant media, determined, in particular, by 
the lifetime of the excited state (when the nonlinearity 
mechanism is associated with saturation of absorption) is many 
times faster than that of both photorefractive crystals and 
most other media. Moreover, the combination of fast response 
and sensitivity is a unique feature. The diffraction efficiency 
(DE) in the recording–reconstructing regime reaches 40% 
(Ref. 17), while the amplification factor for weak signals is 

10
3
 cm

–1
 (Ref. 18).  

In addition, phase self–conjugation according to an off–

axis cavity scheme
19–20

 can be achieved in the resonant media.  
Recording and reconstructing can be performed both by 
simultaneous application of the object pulse and  

reconstructing pulse (RP) to the system of resonance atoms 
and by asynchronous excitation of such a system by these 

beams.
21
 The DE of holograms then depends not only on the 

characteristics of interacting beams and spectroscopic 
parameters of the medium, but also on the time lag between 
the pulses. Depending on the employed experimental 
configuration, the RDH is recorded either in the regime of 

phonon echo
6
 or in self–diffraction regime.

22,23
 Since the 

wavelength of the optical beam is much shorter than the 
dimensions of the sample, the response of the medium to the 
exposure of the pulse must be taken into account in both 
cases.  

In other words, the propagation of light pulses through 
the extended medium must be studied in the self–diffraction 
and echo regimes. Below we consider the RDH recording 
and reconstructing in the self–diffraction regime, since it 
sometimes provides higher diffraction efficiency of 
holograms, as compared to echo–holograms. At the same 
time many salient features of the RDH produced in the 
regime of self–diffraction are typical of echo–holograms. 

Both the stationary and quasistationary self–
diffraction regimes of recording have been studied in 

sufficient detail by now.
16–24

 The nonstationary regime is of 
interest from the viewpoint of recording and reconstructing 
the holograms in the highly sensitive resonant media with 

ultra–short light pulses.
25–26

 Such a technique makes it 
possible to improve the DE of the RDH, as compared to 

both the stationary and quasi–stationary cases.
27
 Most 

studies
16,23,24,28,29

 were concentrated on the spectral–energetic 
aspects of recording the RDH's. The problems of phase 
distortions of the transformed wavefronts have received 
much less attention so far. In particular, phase distortions 
due to self–action and interaction of recording beams 
during stationary recording of DH's were estimated in 
Refs. 24 and 28. It was demonstrated that the DH can be 
recorded with small phase distortions (below the Rayleigh 
criterion) and sufficient DE of about 5–10%. 

Here we study the kinetics of nonstationary energy 
exchange between the RP and reproduced waves during the 
recording of the RDH as well as the effect of small–scale 
instability in the RP on the intensity of energy exchange 
and phase distortions in the reconstructed waves. This 
problem remains practically untackled within the scope of 
dynamic holography, although its urgency for propagation  
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of solitons through extended resonant media was noted even 
in Refs. 30–32. It was found in particular that the 
transverse structure of a 2π pulse develops after it travels 
the distance of its own length l = ντp, where ν is the 

velocity of the soliton and τp is its duration.
32
 The 

distortions depend on the size of the solution cross–section 

and may be great when cross–section radius l
⊥
 . (λl)

1/2
, 

where λ is the wavelength of the 2π pulse. It was 
demonstrated in Refs. 31 and 33 that small–scale 
distortions at exact resonance (Δω = ω21 – ω = 0, where ω21 

is the frequency of the transition and ω is the carrier 
frequency of the pulse) are superposition of waist–like and 
snake–like distortions while the transition from one type of 
distortion to another takes place at large enough detunings 
from resonance. No stabilization occurs during the nonlinear 
stage of the development of instability of a long pulse 
(τp . T2, where T2 is the rate of the irreversible transverse 

relaxation) when l
⊥
 . (λln)

1/2
, where ln = α–1

n  and αn are 

the coefficients of non–resonance absorption, nor multifold 

increase in the intensity of waveguide branches occurs.
32
 

Experiments demonstrated that the conjugate wave 
experiences the self–focusing instability during the FWI in 
sodium vapor. 

 
2. QUASILINEAR REGIME OF RDH RECORDING 

 

 
 

FIG. 1. Planned experimental configuration. 
 

We consider, for simplicity, the following model 
configuration used for recording and reconstructing the 

RDH
23,34,35

 (see Fig. 1). The object beam (OB) E10(x, z, t) 

scans line by line the side of the sample along the z axis, 
activating the system of resonance atoms to the state of 
superposition. The RP E2(x, z, t) approaches the sample 

from the same site. Its interaction with the polarization 
wave produced by the object wave results in the formation 

of a dynamic holographic lattice (polarization lattice
36
) 

while the diffraction of E2 on this lattice produces 

reconstructed waves with reproduced wavefront (RWF) E1 

and conjugate wavefront (CWF) E3, whose wave vectors 

being k1 and k3 = 2 k2 – k1. Here k1(2) is the wave vector of 

the object (reconstructing) wave. We assume that the 
durations of the local OB τp1 and RP τp2, as well as the 

time lag between them τ12 are such that we may neglect the 

dissipative processes in the RDH. In contrast to the regime 
of running waves, scanning provides such conditions in 

extended media.
23
 

We consider vapors of alkali metals as our system of 
resonance atoms, and assume that the durations τp1 and τp2 

are such that the two–level approximation is valid. The 
Hamiltonian for that problem has the form

 
 

H = � ω21 R3 – ( , )exp ( , ) c.c. ,
2

j j j

j

d
R t i t t

+

⎧ ⎫⎪ ⎪⎡ ⎤ε ω − + ψ +⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭
∑ r r rκ  

(1) 
where ω21 and ω are the frequency of the resonance 

transition and the RP carrier frequency, d is the dipole 
moment of the transition, R

þ
 = R1 ± i R2 and R3 are the 

components of the energy spin R = 1/2, εj (r, t) is the 

envelope, and ψj(r, t) is the phase of the jth component of 

radiation. Then the self–consistent system of Maxwell–
Bloch equations describing the interaction of the RP with 
the system of resonance atoms acquires the form  
 

R
⋅

+ = iΔ ω R+ + i 
d

�
 R3 ∑

j

 
 εj e

–i(kj
 

r – ψj) – 
R+
T2

 , (2) 

 

R
⋅

– = – iΔ ω R– – i 
d

�
 R3 ∑

j

 
 εj e

i(kj
 

r – ψj) – 
R–

T2
 , (3) 

 

R
⋅

3 = i 
d

� ⎩
⎨
⎧ 

 

R+∑
j

 
 εj e

i(kj
 

r – ψj) – R–∑
j

 
 ej e

–i(kj
 

r – ψj)

⎭
⎬
⎫ 

 

 – 

–
 R3 – R0

T1
 , (4) 

∑
j

 
 εj e

–i

 

kj
 

r [(k
~

j∇) ε~j + 
n
c 

∂ε~j

∂t  – iΔ κjε
~
j + ]i

2 κ
Δ
⊥

ε~j  = 

= –
2 π i N dω

c n  ⌡⌠
 
 g(Δ ω) R+(Δω, r, t) d(Δ ω) , (5) 

 

where ~εj = εj e
iw; 

~
kj is the unit vector in the direction kj, 

Δ κj = κj – ω n/c, n is the refractive index, N is the number 

density of the resonance atoms, Δω is the detuning of the 
frequency of individual atom from the ensemble mean, Δ⎯

⊥
 

is the transverse Laplacian operator, and T1 is the rate of 

the irreversible longitudinal relaxation. The third and 
fourth terms in the left–hand side of Eq. (5) are due to 
dispersion and diffraction of the interacting waves, 
respectively. 

The initial conditions for the system of equations (2)–
(5) describe preliminary excitation of the resonant medium 
by a square OB E0 in the following way:  

R
±0 = – i 

γ
2 sinθ exp{å i(k1r – ψ1 – Δ ω τ12)} , 

R30 = – 
γ
2 cosθ , (6) 

 

where γ = 2 t h [� ω21(2 κB T)
–1

]; κB is the Boltzmann 

constant, θ = 
2 d

�
 ε1 τp1

 is the local pulse area of the 

scanning OB, and the quantity ψ1 carries phase information 

about the object. We assume for simplicity that 
ψ1 = ψ0 + κ

⊥
x, where κ

⊥
 is the spatial frequency in the 

object beam spectrum. 
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For quasilinear recording the superposition of interacting 

waves may be reduced to a certain effective field
34
 with an 

envelope ε
eff
 = ε

2
 + ε

1 cos(δk
21
r – δψ

21
) + ε

3 cos(δk
23
r – δψ

23
) 

where δkij = ki – kj and δψi j = ψi – ψj. This system of 

equations (2)–(5) can be customarily transformed into a 
system of equations in the areas Φj and phases ψj of the 

interacting waves 
 

∂Φ1

∂z  = – 
α
2 sinθ [1 + cosΦ2 J0(Φ1) J0(Φ3)] × 

 

× cos(ψ1 – κ
⊥
x) exp

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– 

⎝
⎜
⎛

⎠
⎟
⎞τ12

2T
2

*

2

 , (7) 

 

∂ψ1

∂z  = 
α
2 sinθ 

1 + cosΦ2 J0(Φ1) J0(Φ3)

Φ1
 × 

 

× sin(ψ1 – κ
⊥
x) exp

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– 

⎝
⎜
⎛

⎠
⎟
⎞τ12

2T
2

*

2

 + 
κ
⊥

2

2 κ
 + Δ κ , (8) 

 

∂Φ2

∂z  = – 
α
2 cosθ J0(Φ1) J0(Φ3) sinΦ2 , (9) 

 

∂ψ2

∂z  = Δκ , (10) 

 

∂Φ3

∂z  = 

α
2 sinθ [1 – cosΦ2 J0(Φ1) J0(Φ3)] cosψ exp

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– 

⎝
⎜
⎛

⎠
⎟
⎞τ12

2T
2

*

2

, (11) 

 

∂ψ3

∂z  = 
α
2 sinθ 

1 – cosΦ2 J0(Φ1) J0(Φ3)

Φ3
 × 

 

× exp

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– 

⎝
⎜
⎛

⎠
⎟
⎞τ12

2T
2

*

2

 cosψ – Δ κ + 
κ
⊥

2

2 κ
 , (12) 

 

where ψ = ψ3 – 2ψ2 + κ
⊥
x , α = 4π3/2 Nd2ωT2

*(cn�)
–1

 ,  

Φj = 
2d

�
 ⌡⌠
τ12

∞

 εj(x, z, t) dt′, T*
2 is the rate of the irreversible 

transverse relaxation, J0(Φj) is the zero order Bessel 

function of the first kind, and j = 1, 2, 3. 
It follows from Eq. (10) that ψ2 = Δ κ z, i.e., the run–

on of the RP phase is accumulated along the propagation 
path. The rate at which the phases of the components ε1 and 

ε3 change is much higher than the rate of change of the 

envelopes, particularly close to the front face of the sample 
where Φ1 and Φ3 are small as compared to Φ2. For Δ κ = 0, 

κ
⊥
 n 2 κ, and τ12 n T*

2 we have from Eq. (12) 

 

∂ψ
∂z  = – 

α
2 sinθ 

1 – cosΦ2 J0(Φ1) J0(Φ3)

Φ3
 sinψ . 

 
It is easy to demonstrate (see Ref. 37) that the plane 

ψ = 0 must be stable in the phase space {Φ1, Φ2, Φ3, ψ}. 

Hence ψ3 = ψ + 2ψ2 – κ
⊥
x → – κ

⊥
x that is, the PC takes 

place. It may be similarly demonstrated that ψ1 tends to the 

limit ψ1 = π + κ
⊥
x, which means the WFR. The phase 

locking of the interacting waves must be observed, which 

stabilizes the process of energy exchange between the RP 
and the reconstructed waves.34 The energy is primarily 
transferred from the reference beam into the wave with 
RWF or CWF, depending on the pulse areas of the RP and 
OB. If the OB spectrum contains no high spatial 

frequencies, i.e., κ
⊥
 n 2 κ, then small diffraction 

corrections cause no phase distortions of the waves being 
reconstructed. However, with such frequencies in the object 
beam spectrum, no phase locking occurs, and energy 
exchange is alternating and unstable in character that 

decreases the DE of the RDH.
35
 It is of interest to 

investigate the most general case of diffraction and 
dispersion effects on the character of energy exchange and 
the quality of the RWF and CWF for arbitrary pulse areas 
of the OB and RP when the latter is strongly affected by 
the reconstructed waves ε1 and ε3. 

 
3. THE EFFECT OF SMALL–SCALE INSTABILITY ON 

THE NONSTATIONARY ENERGY EXCHANGE 
BETWEEN THE INTERACTING BEAMS DURING 

HOLOGRAM RECORDING 
 

As indicated above, the solitons in extended resonant 
media appear to be unstable towards small–scale distortions in 
their transverse structure. This naturally brings the question 
about the effect of distortions on the energy exchange and 
phase characteristics of the reconstructed waves. We consider 
the same configuration of RDH recording and reconstructing. 
In addition, we assume that the pulse areas of the OB and RP 
are such that the waves with RWF and CWF turn out to be 
comparable with the RP in their intensity due to energy 
exchange between the components. We then analyze the 
process of energy exchange between the RP and the waves 
with RWF and CWF as a function of the spatial frequency κ

⊥
 

recorded in the hologram, of the pulse areas θ and Φ0
2, as well 

as of the value of Δ κ. Here Φ0
2 = ⌡⌠

–∞

∞

 ε2(τ)dτ = pπ is the area 

of the RP and p is a certain positive constant. 
The problem at hand is reduced to the analysis of the 

system of equations (2)–(5) with initial conditions (6). As 
before, the assumption is valid that τp1, τp2 n T1,2, in other 

words, that T1,2 → ∞. The system of equations (2)–(5) may 

be reduced to a form convenient for its numerical 
analysis. We introduce new variables, related to the 
components of the polarization wave corresponding to the 

waves R
±
 = ∑

j = 1

3

 R
±j e

±k
j 
r in the medium. After some 

transformations system (2)–(5) can be brought to the form  
 

R
⋅⋅

+k
 = i Δ ω τp R
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 – 

1
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1
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+ ( )R
⋅
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+ i Δ ω τp R

–k

⎝
⎜
⎛

⎠
⎟
⎞

∑
j

 
 

∂Ej
*

∂t
⎝
⎛

⎠
⎞∑
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 Ej

*

–1

 ; (14) 

 

∂E
κ

∂z  + 
∂E

κ

∂t  – i Δ κ ln E
κ
 + 

i
2 

∂2E
κ

∂x2  = 

 

= – i 
2 π N d2ω τp

2

n � ⌡⌠
–∞

∞

 g(Δω)R
+k
(Δω, r, t) d(Δω), κ = 1, 2, 3. (15) 

 

The system of equations (13)–(15) is in its dimensionless 
form. Amplitudes of the components E

k
 are expressed in units 

of dτp/�, the longitudinal coordinate z is in units of the 

absorption path length ln, the transverse coordinate x is in 

units of ln/κ, and the time t is in units of ln/c. 

This system of equations was numerically solved by 

the net–point method.
38
 To do that, uniform grids with 

steps hx and hz were specified over the Lx×Lz rectangular 

area. A characteristic approximation of the transfer 
operator was used and the step hz was chosen to be equal 

to ht. The values of E
k
 refer to the nodes of the grid  

E lj
κ  = E(hx l, hz j, ht κ) and R

±
 is taken at the center of 

the straight line connecting the adjacent nodes along the 

z axis, i.e, R lj
κ  = R(hx l, hz (j – 1/2), ht κ). To 

approximate the system to the second order O(h2
x, hz

2, ht
2), 

the unconditionally stable symmetric difference algorithms 

were used.
39
 It is further assumed that the input RP has the 

shape E2(z = 0) = E0 pch
–1

(E0(t – t0)), where E0 is the 

peak value of E2 at t = t0. 

To test the adequacy of the model, we studied 
numerically the propagation of a uniform planewave pulse of 
duration τp < T2,1 with the initial area 2π through a system of 

resonance two–level atoms without their preliminary 
excitation (θ = 0). The stability of such a soliton for small–
scale disturbances of its transversal structure was studied. In 
analogy with Refs. 30–32, we assumed that the disturbance in 
the pulse transverse structure was sinusoidal with the period l

´
 

and was no more than 2% of the pulse amplitude. 
Calculations showed that the small–scale instability of 

the RP wavefront is manifested already at the distance of four 
absorption lengths z ∼ 4α–1

n . The pulse front is significantly 

deformed, and waveguide branches appear (Fig. 2). 
 

 
 

FIG. 2. Intensity distribution of the 2π–pulse ⏐E⏐2
2(x, z) for 

τp = 1.5. 
 

During recording the dynamic holograms with θ ≠ 0 the 
energy exchange between the reconstructed waves and the RP 
depends strongly on the energy parameters and shapes of the 
OB and RP as well as on the shape of the RB. In analogy 
with the case of a single 2π – pulse we assume that the wave 
E2 experiences distortions of its transverse structure, which is  

about 2% of the envelope. After this we impose the periodic 
boundary conditions assuming in analogy with Ref. 30 that 
the initial distortion is periodic in character. In this case, in 
contrast to Ref. 32, in addition to the arising diffractional 
lattice with the period l

´
 we must take into account the lattice 

in the medium, on which the phase information is recorded. 
It should be noted that the effect of the holographic 

lattice with the period κ
–1

⊥
 on the development of the lattice of 

small–scale disturbances is not a trivial one. Apparently, such 
an effect is most pronounced at resonance between the two 
structures, when their periods coincide. It was particularly this 
case which was studied in our paper. It allowed us to consider 
the evolution of the RP within the limits of a single period 
assuming that the other parts of the RP cross–section 
developed independently. 

Assuming that l
⊥
 = κ

–1

⊥
, we consider energy exchange 

between the RP and the reconstructed waves as a function of θ 
and κ

⊥
. The results are shown in Figs. 3–6. As the numerical 

analysis showed, the conditions for locking the phase of the 
reconstructed waves are met for small values of κ

⊥
 when 

κ
⊥
 ≤ 10 cm

–1
. Figure 3 illustrates the evolution of the phase of 

the wave with RWF ψ1(r, t) for θ = π/5, Φ0
2 = 2π, and 

κ
⊥
 = 1 cm

–1
. The locking of phase ψ1 at x = 0 occurs at the 

point ψ = πn, as predicted in Ref. 23 on the basis of analytic 
estimates. With high spatial frequencies in the object spectrum 

(κ
⊥
 > 10 cm

–1
) phase locking becomes impossible. It means 

that energy exchange between the interacting waves is 
unstable and high–quality reproduction of the phase of the 
object wave is possible only close to the front face of the 
sample (z ∼ 0.1 α–1

n ). Moreover, the efficiency of the PC and 

WFR deteriorates. 

 
 

FIG. 3. Behavior of the wave with RWF ψ1(x) for θ = π/5, 

Φ0
2 = 2π, and κ

⊥
 = 1 cm

–1
. z = 0.2 α–1

n  (1) and 5.2 α–1
n  (2). 

 

 
FIG. 4. Evolution of the RP wavefront for θ = π/5, Φ0

2 = 2π, 

and κ
⊥
 = 1 cm

–1
 at time t = 10.2. 
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FIG. 5. Spatiotemporal distribution of the intensity of the 
reference beam and of the wave with RWF for θ = π/5, 

κ
⊥
 = 85 cm

–1
, and x = 0.5 Lx . 

 
Small–scale instability of the RP itself affects 

noticeably the phase distortions of waves produced at 
small κ

⊥
 and the level of these distortions depends on the 

energy parameters and shapes of the object and reference 
waves. As seen from Fig. 3, the character of the 
dependence of ψ1 noticeably changes as the distance from 

the front face of the sample increases. Even at short 
absorption lengths z ∼ 2α–1

n  a deviation from the linear 

initial dependence ψ1⏐z = 0 takes place due to the 

wavefront deformation of the pulse E2. Figure 4 

illustrates the evolution of the RP as the wave propagates 
through the medium at time t = 10.2 for θ = π/5 and 
κ
⊥
 = 1 cm–1. Similar results are obtained for θ = π/60 

and θ = π/10. However, distortions of phases ψ1 and ψ3 

are less pronounced that is likely associated with the 
dependence of the arising small–scale instability of E2 on 

the parameters of the OB. It is found that the character 
of energy exchange between the RP and the diffraction 
responses depends largely on the spatial frequency κ

⊥
 and 

becomes nonmonotonic and unstable in character for large 
values of κ

⊥
 (Fig. 5). However, as seen from Fig. 6, that 

nonmonotonic behavior is manifested also at small κ
⊥
 

(κ
⊥
 ∼ 1 cm

–1
). Nevertheless, the wave E1 reaches higher 

intensity in this case. With high spatial frequencies the 
character of energy exchange is determined by several 
factors. First, the instability of the RP wavefront towards 
the small–scale disturbances is manifested. Second, the 
phase run–on of the interacting waves changes 
periodically the phase relations between them. Finally, 
the instability of the wavefronts of the waves with RWF 
and CWF may manifest itself. Figure 7 shows the 
evolution of the wavefront of the wave E1 in the medium 

for θ = π/5, Φ0
2 = 2π, and κ

⊥
 = 85 cm

–1
 at time t = 10.5, 

clearly illustrating distortions in the transverse structure 
of the wave. The unstable character of energy exchange 
diminishes the intensity of the waves with RWF and 
CWF. 
 

 
 

FIG. 6. Energy exchange between the RP and diffraction 

response with RWF for θ = π/5, κ
⊥
 = 1 cm

–1
, and 

x = 0.5 Lx . 

 
Studies of recording–reconstructing the RDH at 

arbitrary ratios of periods of the two diffractional lattices 

demonstrate that violation of resonance for l
´ ≠ k–1 strongly 

dampens the development of the small–scale instability of 
the RP. Nevertherless, stabilization of the energy exchange 
is lacking resulting in the lower DE of the holograms. 

Decreasing the level of the initial disturbances for l
´
 = k–1 

somewhat weakens their effect on the RP stability, but the 
distortions in the transverse structure are still observed at 
large absorption lengths. 
 

 
 

FIG. 7. Intensity distribution of the wave ⏐E⏐2
1(x, z) for 

θ = π/5, Φ0
2 = 2π, and κ

⊥
 = 85 cm

–1
 at t = 10.5. 

 
A strong effect of RP dispersion not only on the 

character of energy exchange but also on the quality of the 

RWF and CWF should be noted. Even at Δ κ = 1 cm
–1

 the 
transverse structure is distorted at z = 0.1α–1

n . The RP 

phase run–on deteriorates the conditions of energy exchange 
for E1, E3, and E2. The exchange becomes alternating and 

unstable in character. 
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Thus the small–scale instability of RP in RDH and 
its dispersion substantially affect the wavefront 
reconstruction and conjugation. Even at low spatial 
frequencies phase information about the object is 
distorted due to the instability of the RP wavefront 
towards small–scale distortions of its transverse 
structure. Such distortions depend strongly on the pulse 
areas and durations of the OB and RP as well as on the 
time lag between them. Violation of the condition of 

phase locking (at κ
⊥
 > 10 cm

–1
) destabilizes the energy 

exchange between the RP and the reconstructed waves. 
The run–on of the phases of interacting waves in 
combination with the small–scale instability of their 
fronts significantly distorts the transverse structure of the 
waves with RWF and CWF. It is of interest to find out 
how such an instability manifests itself during recording 
of the DH's in the resonant media on homogeneously 
broadened spectral lines. To do that, we consider the 

conditions of experimental recording.
7,28,40

  
 

4. QUASISTATIONARY RECORDING OF THE DH'S ON 
HOMOGENEOUSLY BROADENED SPECTRAL LINES 

 
The above–considered configuration used for the 

RDH recording depends largely on the intensity and 
duration of the OB and RP as well as on the time lag 
between them, since holographic lattices are polarization 
ones by their nature. This suggests the use of the ultra–
short pulses (USP) and provides rather high DE, as the 
above calculations show. At the same time the 
quasistationary regime of RDH recording on the 
homogeneously broadened spectral lines of vapor of alkali 

metals is deeply investigated.
15–17,28

 However, the effect 
of small–scale distortions of the reference wave on the 
energy exchange during hologram recording in this regime 
remains practically unexplored, although its importance 
was pointed out even in the papers devoted to the 
stability of single pulses in the regime of enhanced 

transmittance.
32
 

We consider recording of the 3D RDH's by strong 
and weak light pulses of one and the same carrier 
frequency simultaneously applied to the medium from one 
site. Theoretically that problem reduces to the analysis of 
a self–consistent system of equations (2)–(6) for 

T2 n τp2 n T1. Taking into account that the condition R
⋅

±
 = 0 is satisfied, we may solve equations (2) and (3) for 

R
±
 and by substituting them into Eq. (4), we obtain  

 

R
⋅

3 = 

⎝
⎜
⎛

⎠
⎟
⎞d

2 �

2

⎩
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⎧R3 T2 
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j

 
 ε
∼
j e

i
 
kj 

r
 × 

 

× 

⎭
⎬
⎫

⎝
⎛

⎠
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j

 
 ε
∼
l e

i
 
kl 

r
(1 + i Δ ω T2)

–1 +
 
c.c.  . (16) 

 
Upon integrating Eq. (16) over t within the limits (τ1,2,∞) 

taking into account the initial conditions 
R3(t = t0) = R30 = –1/2, we arrive at an expression for the 

component of the polarization wave  
 

R3 = R30 exp

⎩
⎨
⎧
– α ∑

j

 
 ⌡⌠
τ12

t
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⎥
⎤

e
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k
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)r
 ⌡⌠
τ12

t

 ε∼ l* ε∼j dt′ – c.c.  ,  (17) 

 
where  
 

α 2 = 
d2 T 2

2

2�2[1 + (Δ ω T2)
2]

 . 

 
Using the well–known expression exp(ν cos x) = 

= ∑
m=–∞

∞

 
 Im(ν) exp(i m x) (here Im(ν) are the modified 

Bessel functions) and considering the terms of the first 
order in the expansion (m = 0, ±1), after some 
transformations we reduce the considered problem to the 
following system of equations describing the envelopes of 
interacting waves  
 
∂Ej

∂z  + 

∂Ej

∂t  + 
i
2 

∂2Ej

∂x2  = 

1 + i Δ ωT2

2  R30 × 

 

× exp

⎩
⎨
⎧

⎭
⎬
⎫

– α ∑
j

 
 ⌡⌠
τ12

t

 ⏐Ej⏐
2 dt′  {Ej I0(–4α⏐G21⏐) × 

 

× I0(4 
Δ ωT2α⏐G21⏐) + El exp[(–1) j⋅i ξ21] × 

 

×
 
[I0(– 4α⏐G21⏐) I1(4 Δ ωT2α⏐G21⏐)i(–1) 

j–1 + 

 
+ I0(4 Δ ωT2α⏐G21⏐) I1(– 4

 
α⏐G21⏐)]} , (18) 

 

where Glj = ⌡⌠
τ12

t

 ⏐El Ej⏐
 e

i(ψl – ψj) dt′, tan ξlj= 

Im Glj

Re Glj
, 

j ≠ l = 1, 2. 
 
System of equations (18) is written in its 

dimensionless form, and the units of the variables 
entering into it are the same as in Sec. 3. To solve this 
system numerically for the rectangular area D = {(z, x); 
0 ≤ z ≤Lz; 0 ≤ x ≤ Lx)}, we specify the uniform grids and 

approximate the obtained equations at the nodes of these 
grids by the finite–difference algorithms analogous to the 
described above. It was assumed that the pulse of the 
reference wave applied to the input has the form 

⏐E2⏐2 = 
1
2 
⎣
⎡

⎦
⎤1 + tanh( )t – 

z
ν /2  corresponding to the 

wave with enhanced transmittance.
32
 The shape of the 

weak beam was assumed to be identical to the above. A 
sinusoidal distortion of the transverse structure, which 
did not exceed 2% of its envelope, was superimposed on 
the homogeneous planewave pulse at zero time. 
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FIG. 8. Evolution of the wave front of the high–power 
beam at the nonlinear stage of the instability development 
(t = 42). 
 

Numerical estimation of wavefront stability for a 
single pulse of indicated shape shows that the wavefront is 
distorted as the pulse propagates through the sample. The 
beam disintegrates into subpulses over the beam cross–
section. Moreover, a certain increase in their intensity is 
observed. However, their maximum intensities at the 
developed stage of nonlinearity exceed the average ones by 
no more than 2.5 times (see Fig. 8). From the results of 
numerical computations we found that no stabilization takes 
place; however, the instability develops slower in case of 
non–optimal distortions determined by the value and sign 

of the detuning from resonance.
33
 Distortions in the 

transverse structure are not so great when 0 < ΔωT2 n 1, 

but when ΔωT2 ≥ 1 (just the case analyzed in the present 

study) stabilisation is not observed while the rate of the 
increase of distortions is much higher, although, according 
to the estimates reported in Ref. 33, it contains a small 
numerical parameter. 

Instability of the wavefront of the reference wave 
towards the small–scale distortions becomes pronounced for 
the waves being reconstructed resulting in their phase 
distortions and affecting the energy exchange. During the 
RDH reconstructing by long pulses (with the above–
indicated relation between the frequency of the resonance 
transition and the pulse carrier frequency) the energy 
output for the components with RWF and CWF appears to 
be much lower than in the case of hologram recording–
reconstructing by USP (see Fig. 9). This is due to 
relaxation of the induced macroscopic polarization carrying 
the information about the object in the course of its 
interaction with the high–power beam. 
 

 
 

FIG. 9. Energy exchange between light pulses during the 

RDH reconstructing by long waves (κ
⊥
 = 1 cm

–1
 and t = 45). 

 

CONCLUSION  
 
Based on the above–discussed, we may conclude the 

following. The character of energy exchange between the 
reference beam and reconstructed waves in DH's in the 
extended resonant media essentially depends on the pulse 
areas of the OB and RP, on their durations, and on the time 
lag between them, as well as on the stability of the 
reference wave for small–scale distortions in its transverse 
structure. Because of instability of the RP towards these 
distortions, energy exchange is alternating and unstable in 
character, resulting in the lower DE of the RDH. During 
the DH reconstructing, the phase information about the 
object is distorted even in case with no high spatial 
frequencies k

´
 in its spectrum. This is due to instability of 

the RP and the reconstructed waves towards the small–
scale distortions of their wavefronts. These distortions are 
greatest if the spatial frequencies coinciding with the 
frequency of the distortion lattice are found in the object 
spectrum. The proper account of this factor provides the 
opportunity to minimize the arising distortions. When κ

⊥
 is 

small (κ
⊥
 < 10 cm

–1
) and the dimensions of the medium do 

not exceed 4α–1
n , phase locking of the interacting waves is 

observed, which stabilizes the process of energy exchange 
and provides the maximum DE of the RDH. Dispersion in 
the RP results in the lack of stabilization even under the 
above conditions. 

During the DH reconstructing by long pulses the DE 
of interaction depends on the time lag between the pulses 
and on their durations, and is at maximum for maximum 
induced polarization. However, relaxation of that 
polarization noticeably diminishes the efficiency of energy 
exchange.  
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