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It is proposed to assume that in many practical cases an actual light beam can be 
presented as a combination of components that differ in power and divergence. Not 
very complicated series of theoretical and experimental investigations enabling one to 
determine radii of coherence and power of these components is proposed. It is shown 
that a three-component theoretical model, constructed according to this technique 
quite well describes propagation of the radiation of the Cu-vapor laser under study in 
the far zone of propagation. 

 
1. INTRODUCTION 

 
Hundreds of original papers, overviews, and 

monographs devoted to studies of properties of copper–
vapor laser (CVL) emission can be found in literature. 
Quite vast bibliography can be found, for example, in 
Ref. 1. It should be noted that among the parameters 
determining behavior of the CVL, the beam power and 
divergence are most important for many practical 
applications of lasers. Therefore in this paper we shall 
consider just these characteristics or, in other words, the 
spatial and energy structure (SES) of CVL radiation. 

By omitting a discussion of physical processes of the 
output CVL beam formation we would like to note only the 
most important, from our point of view, circumstances.2,3 
First, the use of an unstable resonator (UR) provides 
maximum power at minimum divergence. Second, the CVL 
radiation generated in a UR is composed of several 
components (modes4) each being characterized by its own 
values of the mean power and divergence. And finally, these 
properties strongly depend on the laser construction, the 
type of UR, and on operating conditions of a CVL. 

In this connection, it seems to be obvious, that some 
simple researches are advisable prior to using a CVL that 
could provide obtaining information about the number of 
emission components of a CVL, their power and divergence. 
One of possible ways of acquiring such an information is 
considered in this paper. Results of this study are 
summarized in a mathematical model of the output CVL 
beam, the validity of which is checked by comparing with 
the experimental data. 

 
2. EXPERIMENTAL SETUP AND TECHNIQUE 
 
In our experiments we used a CVL active element 

"Kulon" with a 30 cm long and 1.2 cm in diameter active 
zone. The laser delivered pulsed radiation at a pulse 
repetition frequency of 6 kHz. Total mean power of 
radiation at both green and yellow lines was 1.3 W 
(0.8 W at the wavelength 510.6 nm which was used in 
the experiments). 

Optical arrangement of the experimental setup is 
shown in Fig. 1. The active element 1 was placed inside a 
confocal unstable resonator, arranged between two totally 
reflecting spherical mirrors with the focal lengths of 100 
and 6 cm, respectively. The escape of radiation from the 
cavity was performed with a plane–parallel mirror 4. The  

coupling diaphragm with the diameter 0.8 mm was placed 
at the point of common focus of the mirrors 2 and 3. 

 

 
 

FIG. 1. Block diagram of the experimental setup. 
 

Information about SES of a CVL beam has been 
extracted from two characteristics measured 
experimentally. The first one is the transmission of the 
coupling diaphragm 7 placed at the caustic of a spherical 
mirror 6  
 

η = η(ω) = P
ω
 / P ,  

 

where P and P
x
 are the mean power of radiation, incident 

onto the diaphragm and passed through it. Measurements 
were carried out for 10 values of the diaphragm radius from 
ω

min
 = 125 to ω

max
 = 920 μm. Second, the function 

η = η(Δz) was studied, where Δz is the distance between the 
diaphragm 7 (ω = 700 μm) and the caustic (see the arrow in 
Fig. 1). The value of Δz varied in the range from – 30 to 
+ 30 cm. 

Experiments were carried out with two spherical 
mirrors 6. Focal lengths of the mirrors were 155 and 
207 cm. An UMO–2 power meter 8 and an interference  
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filter were used for measuring the emission power and 
isolating the green line of the CVL emission. 

 
3. THEORETICAL MODEL 

 
First of all, it is necessary to solve the problem on the 

number of components in the output beam of the CVL with 
UR. 

Let us assume, that the formation of laser radiation in 
an UR is as follows. Spontaneous emission, propagating 
along the direction towards the coupling hole escapes from 
the cavity in the form of a widely diverging superradiance 
(see the dashed line in Fig. 1). Spontaneous emission 
reflected from mirror 2 and passed again through the 
amplification zone forms, as it is called, a single–pass 
generation. The portion of this emission confined by the 
cone of angular aperture 2a/f

2
, where a is the radius of the 

active zone, escapes from the resonator in the form of 
almost parallel beam. In fact, just this portion of laser 
emission makes the main contribution to the formation of 
the output laser beam when successively travelling through 
the UR. Since in our case of 20–ns pulse duration only 
three round trips of the emission can occur inside the 
cavity, we shall consider a three–component model which 
takes into account the single pass emission as the 
background, the beam formed due to double round trips as 
an intermediate radiation, and the core formed after three 
round trips of the emission inside the UR. (According to 
terminology from Ref. 3). Comparatively low power 
superradiance is neglected in this model.  

Since in the case under study we deal with a partially 
coherent light, we shall make use, as it is usual,5 a 
transverse function of coherence for describing its 
propagation. We assume that the initial distribution of a 
coherence function for each of the three components is as 
follows: 
 

Γi(α, β, z = 0) = I
0i exp 

⎩
⎨
⎧

⎭
⎬
⎫

– 
2α2

a2
i

 – 
β2

2l2i
 + i κ 

αβ

Ri
, i = 1, 2, 3, (1) 

 
where α = (r

1
 + r

2
)/2, β = r

1
 – r

2
, ai determines the 

distribution of the mean intensity, Ri is the radius of a 

curvature of the average wavefront; li = aiLi/ L2
i + 2a2

i, 

Li is the radius of coherence, z is the axis along the beam 

(z = 0 is the position of the mirror 6 in Fig. 1), and r is the 
radius–vector in the plane perpendicular to the propagation 
axis. 

Two approximations were used in Eq. (1): that is the 
dependence of Γi on the difference (β) and sum (α) 

coordinates was assumed to be Gaussian. The first 
assumption is rather common and it is valid under 
sufficiently general restrictions imposed on the amplitude 
and phase fluctuations of the radiation.5 The second 
assumption is, strictly speaking, arbitrary and we use it 
only to alleviate analytical calculations. However, it is 
known,5 that the intensity distribution in the far zone and, 
consequently, in the focal plane (which we are interested 
in) is determined by the initial distribution of the coherence 
function over the difference coordinate and does not depend 
on the initial intensity distribution. The boundary 
conditions in the form of Eq. (1) can be considered quite 
acceptable for description of the intensity distribution in the 
vicinity of geometrical focus of a lens. 

Using Eq. (1) one can easily show5 that in the vicinity 
of geometrical focus of a lens with the focal length f the  
 

average intensity of each component is determined by the 
expression 
 

Ii(r) ∼ P Qi exp (– 2 r 
2/ρ2

i) , (2) 
 

where P is the total mean power of the beam, Qi is the 

contribution coming from each component to the total 
power 
 

ρi = z2 a2
i (1/z – 1/f′i)

2 + 4z2 / κ
2 l2i , (3) 

 

where f′i = f Ri / (Ri – f) , κ = 2π / λ , and z is the 

distance from the lens. In the plane of geometrical focus we 
have 
 

z = f′  and  ρi = 2z / κ li . (4) 

 
4. DATA PROCESSING 

 
As follows from the above discussion the beam 

intensity in a plane at a distance z from a lens is  
 

I = ∑
i=1

3
 Ii = ∑

i=1

3
 I

0i exp (– 2r2/ρ2
i) = 

= (2P/π) ∑
i=1

3
 (Qi/ρ

2
i) exp (– 2r2/ρ2

i) .  

 

The power P
ω
, passed through the hole with radius ω is 

determined by the integral:  
 

P
ω
 = 2π ∑

i=1

3
 
⌡⌠
0

ω

 Ii(r) r dr = P ∑
i=1

3
 Qi[1 – exp(– 2ω2/ρ2

i)] = 

= P ∑
i=1

3
 Qi Wi . 

 

Then for the transmission coefficient η we have  
 

η = η(ω) = ∑
i=1

3
 Qi Wi . (5) 

 
Let the transmission coefficients for two diaphragms 

with radius ω = ωj, j = 1, 2 be known. In this case we have 

three equations 
 

∑
i=1

3

 Qi Wij = ηj ,  j = 1, 2 ;  ∑
i=1

3

 Qi = 1 , (6) 

 

where  

Wij = 1 – exp (– 2ω2
j/ρ

2
i) . 

 

If all Wij are known, the system of Eqs. (6) transfers 

into the system of equations for three unknown coefficients 
Qi. The solution of system (6) is 
 

Q
1
 = D

1
 /D ,  Q

2
 = D

2
 /D ,  Q

3
 = 1 – D

1
 /D – D

2
 / D , (7) 

where  
 
D = (W

11
 – W

31
) (W

22
 – W

32
) – (W

21
 – W

31
) (W

12
 – W

32
), 

D
1
 = (η

1
 – W

31
) (W

22
 – W

32
) – (η

2
 – W

32
) (W

21
 – W

31
) , 

D
2
 = (η

2
 – W

32
) (W

11
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31
) – (η

1
 – W

31
) (W

12
 – W

32
) . 
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Here we would like to note one circumstance. If the 
condition ωj . ρj, j = 1, 2 is fulfilled, then 

 
D → (1 – W

31
) (1 – W

32
) – (1 – W

31
) (1 – W

32
) = 0 , 

 
and the solution of Eq. (7) becomes senseless. Figure 2 
shows the response of the solution of Eq. (7) to the errors 
in experimental measurements of η = η(ω). It presents the 
rms error σi as a function of relative error εi of ηi 

measurements.  Assume also that only four first values of ηi 

corresponding to four smallest diaphragms of a series of ten 
diaghragms used in the experiment are measured with an 
error. Thus,  
 

η
~

j = ηj (1 + εj) ,  j = 1, 4 , 

 
where Gaussian random value εi has the zero average value 

and variance σ2
e
. 

 

 
 

FIG. 2. The dependence of rms error σi in determining 

fraction coefficients for power of core (1), intermediate 
(2), and background (3) beams on the error σ

ε

 in 

η = η(ωj) measurements for four the least ωj values. 

 
The results of numerical simulations are summarized 

by the expression 
 

σj = 
1
N ∑

i=1

N

 (Q
~

in
 – Qi)

2 / Qi , 

 
where Qi are the exact values of the fraction coefficients and 

Q
~

in
 are those, obtained in each of N = 400 simulation cycles. 

 
5. SEQUENCE OF OPERATIONS 

 
First of all we experimentally find the function 

η = η(Δz) and determine the value zf where η(zf) = η
max

. 

Then we measure the function η = η(ω) in the plane z = zf . 

Further processing assumes several stages. 
At the first stage we suppose all Ri to be of the same 

value that means that all three components have their 
caustics at the plane z = zf . As a result, 

 

f′i = zf = Ri f / (Ri – f) ,  i = 1, 2, 3 , 

 
and, in addition, expression (4) holds true for all ρi. 

Then we take arbitrarily two experimental values of 
ηj = η(ωj), j = 1, 2. Also arbitrarily (but so that  

l
1
 > l

2
 > l

3
) we take three values for li. Here and below we 

designate the characteristics of the core, intermediate, and 
background radiation by indices 1, 2 and 3, respectively. 
Substitute these li values in Eq. (4) and calculate three 

values of ρi. Then the values ηj, ωj, and ρi are substituted 

in Eq. (7) and we find Qi values. 

Two sets of three parameters Qi and li obtained in this 

way describe the behavior of the curve η = η(ω), so that it 
coincides with two preselected experimental points. By 
varying the values li one can achieve the best fitting 

between the theoretical and experimental curves. 
Taking another pair of experimental values we then go 

through the same procedure again. Finally, by averaging 

(over the number of pairs used) we obtain mean values Q
–

i
 

and l
–

i
, which are considered as the final results. 

Now it is necessary to construct theoretical function 

η = η(Δz) using Eq. (3) and thus obtained values Q
–

i
 and l

–
i
 

and to match it to the experimental one by varying the 
quantities ai from Eq. (3). It can happen so that for the 

best fitting of the plots we are forced to ignore the 
assumption on equality of Ri values. In this case we should 

do the following. Since the above–obtained value zf 

strongly depends on the distance between the mirrors 2 and 
3 of the UR (see Fig. 1), we can align the UR so that 
zf = f, where f is the focal length of the mirror 6. In this 

case it can be assumed quite correctly that 
 
R

1
 = ∞ > R

2
 > R

3
 . 

 
Thus, to achieve the best fitting between the 

theoretical function η = η(Δz) and the experimental one it 
is necessary to find proper values of the five sets of 
parameters: ai, R2

, and R
3
. 

At the second stage it is necessary to correct the 

values Q
–

i and l
–

i using already at the first step formula (3) 

instead of Eq. (4) and ai and Ri found. Using thus 

corrected Q
–

i and l
–

i values we have to find ai and Ri again 

and so on. Reiterations are being done until the changes of 
the sought values become negligible. Estimates show that 

already at the second stage the values, for example, Q
–

i 

differ from the initial ones by less than 0.5%, that is, in 
many cases one iteration is quite sufficient. 

 
6. MEASUREMENT RESULTS AND CONCLUSIONS 

 
Following the above procedure we have carried out 

measurements using two mirrors 6 with the focal lengths 

f = 155 and 207 cm. The values Q
–

i and l
–

i obtained in this 

way are shown in Table I. 
 
TABLE I. 
 

 zf , cm 

Parameters 155 207 Averaged 
over two zf 

l
–

1
, l
–

2
, l
–

3
,cm

0.25, 0.058, 0.01  0.25, 0.056, 
   0.008 

 0.25, 0.057, 
  0.009 

Q
–

1
,Q
–

2
,Q
–

3
,%

22.8, 57.9, 19.3  22.5, 62.4, 15.1  22.65, 60.15,
  17.2 
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Figure 3 shows experimental (dots) and theoretical 

(solid line) functions η = η(ω). Averaged (over zf) values of Q
–

i 

and l
–

i (the third column in the table) were used for 

calculations. 

 
 

FIG. 3. Transmission coefficient for the diaphragm placed 
in the focal plane of a mirror, as a function of the 
diaphragm radius. 1) the focal length of the mirror 
f = 155 and 2) f = 207 cm. 
 

 
 

FIG. 4. The power of radiation passed through the 
diaphragm with the radius ω = 700 μm, as a function of 
the distance between the diaphragm and the focal plane of 
the mirror with f = 155 cm (a) and f = 207 cm (b). 

 

Theoretical functions P
ω
 = P

ω
 (Δz, ω = 700 μm) were 

calculated using these values of Q
–

i and l
–

i as well as assuming 

that a
1
 = a

2
 = 0.56 cm, a

3
 = 1.8 cm, R

2
 = 18 ⋅ 103

 cm, and 

R
3
 = 103 cm. Results are presented in Fig. 4. Corresponding 

experimental values are shown by dots. 
Rather good agreement of the theory and experiment 

allows us to assume that expression (1) is a suitable model of a 
CVL beam formed in UR as far as it concerns the intensity 
distribution in the far zone (points corresponding to the 
maximum Δz in Fig. 4 drop out). 

 

In principle, the proposed procedure is rather simple 
and convenient. Really, a researcher has only to measure 
the functions η = η(ω) and η = η(Δz) and use them in 
calculations. The number of experimental points can be 
reduced to 3 or 4 and the main problem is to measure 
these values as accurate as possible. Two circumstances 
help to solve this problem. First, the function η = η(ω) 
should be smooth and monotonic. Second, the measured η 
value can be only smaller or equal to the actual one. This 
allows one to correct the results during measurements. 

Let us note basic drawbacks, from our point of 
view, of the proposed procedure. Unfortunately, all 
parameters of the background except for Q

3
, are 

determined very arbitrarily, that is the behavior of plots 
in Figs. 3 and 4 only weakly depends on them. Then, the 
necessity of fitting some parameters should be mentioned. 
Of course, we would like to complete the system of 
equations (6) by three equations and to solve the system 

of six equations for six unknown Q
–

i
 and l

–
i variables. 

However, this possibility seems to be too problematic 
now. 

 

CONCLUSION 

 

Thus, it can be noted that the use of three 
component model is well justifiable only for the 
particular object of our study. If necessary, the developed 
procedure can be easily extended to the case of an 
arbitrary number of output radiation components. We 
think also that this technique can be applied without 
principal changes to any laser and nonlaser radiation with 
Gaussian statistics under one condition that the degree of 
radiation monochromaticity is so high that chromatic 
aberrations can be neglected. 
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