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Analytical relations for cross sections and efficiency factors of the extinction, 
scattering, and absorption are obtained within the framework of the method of 
physical optics for a round plate when the normal to its base coincides with the 
direction of incident wave propagation. It is shown based on the energy relationships 
relating the sought characteristics that the error in the method of physical optics is 
estimated by a linear combination of two integrals whose values depend only on the 
diffraction parameter p = ka (a is the radius of a plate). Different numerical 
estimates of the relationship of the method uncertainty with the diffraction parameter 
are presented. 

 
The method of physical optics is shown to be the most 

optimal one in describing the scattering of optical radiation 
which interacts with spatially oriented atmospheric crystals.1,2 
Actually, an electromagnetic field near the scatterer surface is 
formed as beams of parallel rays due to its polyhedral shape. It 
should be noted that linear dimensions of each beam forming the 
field for any atmospheric crystal many times exceed the 
wavelength not only in the visible but also in the near and 
middle IR ranges. If an electromagnetic field in each beam cross 
section and contours of this section are known, then the method 
of physical optics allows one to simply recalculate 
electromagnetic field of refracted beams from the near to the far 
zone. This method does not take into account possible edge 
perturbation of the electromagnetic field of refracted beams. 
However the uncertainty of the method is negligible provided 
that the boundary region of the beam cross section where the 
distortions occur is far less than the entire cross section of a 
beam. Finally, this requirement is reduced to the statement that 
the larger are the linear dimensions of a polyhedron compared to 
the wavelength, the more accurate is the physical optics 
description of the electromagnetic field scattering by a 
polyhedron. In this paper the aforementioned statement is 
embodied in quantitative estimates obtained based on the law of 
energy conservation.  

As a crystal model, the simplest geometric shape of a 

round plate with a complex refractive index n~ = n + iκ, 
radius a and thickness d was chosen. The normal to the 
plate base is assumed to be oriented along the direction of 
propagation of a plane wave incident on it. Such a problem 
formulation makes it possible to obtain all energy 
characteristics of scattering in the simplest and most 
suitable for analysis form. 

The efficiency factors of extinction (Q
ext

), scattering 

(Q
sca

), and absorption (Q
abs

) for any scatterer, including 

those for a round plate, are related by the following 
expressions3: 
 
Q

ext 
= Q

sca 
+ Q

abs 
;  κ ≠ 0 ,   (1) 

 
Q

ext 
= Q

sca 
;
  

κ = 0 .   (2) 

 
 

Based on relation (2) we find the applicability limits of the 
method of physical optics for the particular case (κ = 0) of the 
aforementioned problem of scattering. Then we make 
necessary generalization when proceeding to the general case 
of the problem for κ ≠ 0 that makes relation (1) valid. 

At normal incidence of the wave onto the plate base the 
solution of the scattering problem, by virtue of symmetry, is 
reduced to a scalar case. In addition, in the formula for a 
scattered field written in a spherical system of coordinates 
(r, ϑ, ϕ) there should be no dependence on the azimuthal 
angle ϕ. With these simplifications taken into account the 
scattering on the plate of any component of the 
electromagnetic field with unit amplitude is described by the 
relation 
 
Ψ(r, ϑ) = S(ϑ) exp(i κ r)/ i κ r , (3) 
 
where  
 
S(ϑ) = (1 – T) F

1
(ϑ) + R F

2
(ϑ) . (4) 

 
The first term in relation (4), with the account of mutual 
phase shifts, couples a diffracted field with the scattered fields 
of all beams emerging from the plate along the direction of 
incident wave propagation. The second term involves the 
scattered fields of the reflected beam and of all beams 
emerging from the plate along the backward direction. Within 
the framework of the problem formulated T and R are 
determined as the Fresnel coefficients for a plane wave 
interacting with a semitransparent layer and have the form  
 

T = 
t exp[i κ d (n – 1)]
1 – r exp(2 i κ d n )

 ,  (5) 

 

R = 
n – 1
n + 1( )1 – 

t exp(2 i κ d n)
1 – r exp(2 i κ dn )

 ,  (6) 

where  
 

t = 
4 n

(n + 1)2 ;  r = ( )n – 1
n + 1 

2

 .   
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The amplitude functions F
1
(ϑ) and F

2
(ϑ) characterizing the 

scattering of the propagated and reflected beams are 
determined as Fraunhofer integrals over the plate base. 
Finally, these integrals are reduced to the analytical 
expressions typical for scattering theory3,4 
 

F
1
(ϑ) = p2 

1 + cosϑ
2  

J
1
(p sinϑ)

p sinϑ  ,  (7) 

 

F
2
(ϑ) = p2 

1 + cos(π – ϑ)
2  

J
1
(p sin(π – ϑ))

p sin(π – ϑ)
 ,  (8) 

 
where p = κa is the diffraction parameter; κ is the wave 
number, and J

1
(z) is the first–order Bessel function. 

The extinction cross section σ
ext

 is found from the 

formula3,4  
 

σ
ext

 = 
4π
κ
2 Re(S(0)) . (9) 

 
Substituting Eq. (4) into Eq. (9) and taking into account that 

F
2
(0) = 0 and F

1
(0) = (1/2) p2 = (1/2)(κ a)2 we obtain for 

the extinction cross section 
 
σ

ext
 = 2π a2 (1 – Re(T)) , (10) 

 
and the extinction efficiency factor sought is determined by 
the relation 
 
Q

ext
 = σ

ext
/πa2 = 2(1 – Re(T)) .  (11) 

 
The scattering cross section σ

sca
 and the scattering 

efficiency factor Q
sca

 are calculated by the formulas4 

 

σ
sca

 = ⌡⌠
0

2π

 ⌡⌠
0

π

 ⏐S(ϑ)⏐2

κ
2  sinϑ dϑ dϕ = 

2π
κ

2 ⌡⌠
0

π

 ⏐S(ϑ)⏐2 sinϑ dϑ, (12) 

 
Q

sca
 = σ

sca
/π a2 .  (13) 

 
The relation for ⏐S(ϑ)⏐2 is found using Eq. (4). 

Following some simple transformations we obtain 
 
⏐S(ϑ)⏐2 = [F

1
(ϑ)]2 ⏐1 – Τ⏐2 + [F

2
(ϑ)]2 ⏐R⏐2 + 

 
+ 2 F

1
(ϑ) F

2
(ϑ) Re[(1 – T) R*] . (14) 

 
For the amplitude functions F

1
(ϑ) and F

2
(ϑ) it is easy to 

prove the identities  
 

⌡⌠
0

π

 [F
1
(ϑ)]2 sinϑ dϑ = ⌡⌠

0

π

 [F
2
(ϑ)]2 sinϑ dϑ , (15) 

 

⌡⌠
0

π

 F
1
(ϑ) F

2
(ϑ) sinϑ dϑ = 2 ⌡⌠

0

π/2

 F
1
(ϑ)F

2
(ϑ) sinϑ dϑ (16) 

 
With relations (14)–(16) taken into account the expression 
for the scattering efficiency factor takes the form 
 

Q
sca 

= (⏐1 – T⏐2 + ⏐R⏐2) A(p) + 2Re[(1 – T) R*] B(p), (17) 

 

where 
 

A(p) = 2 ⌡⌠
0

π

 ( )1 + cosϑ
2

2 J 
2
1
(p sinϑ)

sinϑ  dϑ ,  (18) 

 

B(p) = ⌡⌠
0

π/2

 sinϑ J 
2
1
(p sinϑ) dϑ .  (19) 

 

 
 

FIG. 1. A plot of values of the integrals A(p) vs the 
diffraction parameter p. 
 

  
 

FIG. 2.  A plot of values of the integrals B(p) vs the 
diffraction parameter p. 
 

Depicted in Figs. 1 and 2 are the plots of integrals A(p) 
and B(p). Analysis of expressions (18) and (19) reveals that 
 
lim
p→∞

A(p) = 1,  lim
p→∞

B(p) = 0.   (20) 

 
As a result, for p → ∞ the proof of relation (2) is reduced to 
the proof of the identify 
 
2(1 – Re(T)) = ⏐1 – T⏐2 +

 
⏐R⏐2 ,  (21) 

 
which can readily be transformed to a simpler form 
 
⏐T⏐2 + ⏐R⏐2 = 1. (22) 
 
Substitution of expressions (5) and (6) for T and R into 
identity (22) allows it to be easily proved. It should be noted 
that in identity (22) the law of electromagnetic energy 
conservation is represented in a more explicit form than that  
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in relation (2). Actually, it follows from Eq. (22) that in the 
absence of absorption in the plate (κ = 0) the sum of 
intensities of the propagated and reflected electromagnetic 
fields is equal to the incident field intensity. 

As it should be expected, the method of physical optics 
accurately describes the scattering only as p → $. Let us 
estimate the uncertainty of this method for an arbitrary value 
of the diffraction parameter p. Let us use the designation 
 

Q
ext

 – Q
sca

Q
ext

 = Δ(p). (23) 

 

Expression (2) interrelates the local and integral values 
of the amplitude function S(ϑ). Then the difference between 
the values Q

ext
 and Q

sca
 is taken as an estimate of the 

uncertainty of the method used for obtaining the amplitude 
function S(ϑ). To determine the upper limit for Δ(p) let us 
use the inequality 
 

–(⏐1 – T⏐2
 + ⏐R⏐2) ≤ 2Re[(1 – T)R*] ≤ ⏐1 – T⏐2

 + ⏐R⏐2
 . (24) 

 

Inequality (24) can readily be proved in the general form, i.e., 
it is not related to the magnitudes of the complex values T 
and R. Let us transform inequality (24) with the account of 
identity (21) and expressions (11), (17) describing Q

ext
 and 

Q
sca

. As a result, we have 
 

Q
ext 

(A(p) – B(p)) ≤ Q
sca

 ≤ Q
ext

(A(p) + B(p)). (25) 
 

By combining relation (23) and the left–hand side of 
inequality (25) we obtain the estimate for relative 
characteristic (23) 
 

Δ(p) ≤ 1 – A(p) + B(p) .  (26) 
 

The latter inequality yields the following numerical estimates: 
Δ(p) < 10% when p > 10 (a > 1.6 λ); Δ(p) < 5% when 
p > 20 (a > 3.2 λ); Δ(p) < 2% when p > 55 (a > 8.8 λ); and, 
Δ(p) < 1% when p > 120 (a > 19.1 λ). It follows from 
inequality (26) that only the highest degree of localization of 
amplitude functions around the directions of output refracted 
beams (A(p) ≈ 1, B(p) ≈ 0) provides for small values of the 
relative uncertainty. 

Let the absorption coefficient of the plate κ differ from 
zero. This complication of the problem results only in formal 
modifications of the relations obtained. In particular, the real 
refractive index n in formulas for T and R must be replaced 

by the complex index n~ = n + iκ. After such a substitution the 

aforementioned Fresnel coefficients are denoted as T~ and R~ . 
The procedures for solving the formulated problem of 
scattering for the general (κ ≠ 0) and particular (κ = 0) cases 
coincide. Therefore the values Q

ext
 and Q

sca
 for κ ≠ 0 are 

determined from the same relations (11) and (17) in which 

new designations T~ and R~ must be used instead of T and R.  
 

Let us now determine the absorption efficiency factor 
Q

abs
 from Eq. (1) assuming that A(p) = 1 and B(p) = 0. 

The result is 
 

Q
abs 

= 1 – ⏐T~⏐2 – ⏐R~⏐2 . (27) 

 
Referring to identify (22) proved for κ = 0 it can readily be 
seen that the right–hand side of relation (27) involves the 
only possible combination of Fresnel coefficients which 
describes the absorption of electromagnetic energy in the 
plate. Actually, if the intensities of the propagated and 
reflected electromagnetic fields are subtracted from the 
intensity of the field incident onto the plate, the difference 
obtained determines the intensity losses due to absorption. 
Thus the only possible form of the right–hand side of 
relation (27) proves the validity of identity (1). As a result, 
obtained estimate (26) for the relative uncertainty of the 
method of physical optics remains valid in the case of 
absorbing scatterers, as well. 

Using Eq. (27) we write the formula for the 
absorption cross section σ

abs
 which can be useful for 

estimating the absorbed energy of optical radiation 
interacting with a system of oriented plate crystals. It has 
the form 
 

σ
abs 

=
 
πa2 (1 – ⏐T~⏐2 – ⏐R~⏐2). (28) 

 

Remind that T~ and R~  are determined from relations (5) and 

(6) where n must be replaced by n~. 
Linear dimensions of spatially oriented atmospheric 

crystals are, as a rule, hundreds and even thousands of 
micrometers. Therefore the obtained numerical estimates 
determining the applicability limits of the method of 
physical optics ensure its correct use for the aforementioned 
crystals with high enough accuracy not only in the visible 
but also in the IR ranges. 
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