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A new technique for reconstructing the particle size distribution from the data 
on the optical transfer function in the small–angle approximation of the radiation 
transfer theory is considered. The technique uses a representation of the Fourier 
transform of the aerosol scattering phase function in the form of a correlation function 
of particle shadow. The accuracy of the method is analyzed numerically based on the 
developed regularizing algorithm for the inverse problem solution. It is shown that the 
accuracy of the method is the same as of the solution for the inverse problem on 
angular distribution of multiply scattered plane wave. 

 
The integral equation derived in Ref. 1 enables one to 

determine the spatial distribution of the extinction 
coefficient for a given microstructure of a medium or, on the 
other hand, to reconstruct the particle size distribution 
function for a given profile of the extinction coefficient 
retrieved from the data on the optical transfer function 
(OTF) of the medium in the small–angle approximation of 
the radiative transfer equation (RTE). The first problem 
was considered at length in Ref. 1. This paper deals with 
the analysis of the second problem, the solution of which is 
based on the fruitful idea of representation of the Fourier 
transform of the scattering phase function as a correlation 
function of particle shadow proposed in Ref. 2. This idea 

was previously used to advantage in developing the method 
for diagnostics of coarsely dispersed media from 
measurements of the angular distribution of multiply 
scattered radiation in the small–angle approximation.3 

 
1. INITIAL EQUATIONS AND PROBLEM 

FORMULATION 
 
In solving the RTE in the small–angle 

approximation,2,4,5 the Fourier transform of the scattering 
phase function can be represented in the form of an 
autocorrelation function of mean particle shadow2,3  
 

ϕ(ρ) = ⌡⌠
ρ/2

R

 G (ρ/2r) f(r) dr , (1) 

 
where f(r) = s(r)/S, s(r) = πr2n(r), and n(r) is the 
distribution of particle number density over size;  

S = ⌡⌠
0

R

 s(r) dr is the total geometric cross section of particles 

in unit volume of the scattering medium; and, G(ρ/2 r) is the 
autocorrelation coefficient of the ratio of shadow of a spherical 
particle of radius r to its cross sectional area 
 

G(t) = 
⎩
⎨
⎧

 

2π–1 [arccos t – t 1 – t 2 ] , t ≤ 1,
0,  t > 1.

 (2) 

 

The dependence ϕ(ρ) can be found from the angular 
distribution of a multiply scattered plane wave3 or from 
measurements of a spatial intensity correlation function.6 In 
its turn, with knowledge of the function ϕ(ρ), it is possible 
to formulate an inverse problem in reconstructing the 
microstructure of the medium from integral equation (1). 
Such a problem was considered in Ref. 6 where the method 
of numerical inversion of Eq. (1) was proposed and its 
efficiency was analyzed. 

In this paper a new method is proposed for 
determining a disperse composition of a dense medium from 
the measurements of its OTF E(ν) which in small–angle 
approximation of the RTE is related to the autocorrelation 
function of a particle shadow ϕ(ρ) via the expression1 
 
F(ν) = exp { }–t + g(n)/2  , (3) 
where 
 

g(ν) = ⌡⌠
0

z

 ε(z – t) ϕ (νt/κ) dt , (4) 

 
ν is the spatial frequency, τ is the optical depth of the 
medium in the interval [0, z], and ε(t) is the volume 
extinction coefficient. 

In the general case the function g(ν) given by Eq. (4) 
depends on spatial distribution of the extinction coefficient. 
However, for a homogeneous medium with the constant 
extinction coefficient ε(t) = ε along the path, expression (4) is 
simplified 
 

g(ν) = ε ⌡⌠
0

z

 ϕ (νt/κ) dt . (5) 

 
By substituting the variables ρ′ = νt/κ and ρ = νz/κ 

in Eq. (5) we obtain the integral equation  
 

⌡⌠
0

r

 ϕ (ρ′) dρ′ = h(ρ) , (6) 
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where h(ρ) = τ–1ρg(κρ/z), from which the correlation 
function of particle shadow ϕ(ρ) = dh(ρ)/dρ is found. 
Thus the problem in reconstructing the particle size 
distribution function f(r) from measurements of the OTF 
of a medium F(ν), given by Eq. (3), with the known 
optical depth τ necessitates the differentiation of the 
function g(ν) = 2 [τ + ln F(ν)] with subsequent inversion 
of integral equation (1). The optical depth τ is uniquely 
determined by the value of the net radiation flux 
propagating through a plane perpendicular to the 
direction of propagation τ = – ln F2(0), where  
 

F(0) = 2π ⌡⌠
0

∞

 E(r) r dr , (7) 

 

E(r) is the radial distribution of the irradiance in the plane 
z = const. 

 
2. DETERMINATION OF MOMENTS OF 

DISTRIBUTION  
AND THE INVERSION PROCEDURE 

 
2.1. Some important characteristics of the unknown 

distribution f(r) can be found without inversion of Eq. (1). 
It follows from the properties of the function ϕ(ρ) 
determined by its kernel G(t) in the form of Eq. (2) that 
h(ρ) is a positive function, increasing smoothly and being 
convex upwards when 0 < ρ ≤ 2R, which has a maximum of 
 

h
max

 = ⌡⌠
0

2R

 ϕ(ρ) dρ = 
8
3π

 r– (8) 

 

for ρ > 2R, where r– = ⌡⌠
0

R

 r f(r) dr is the particle radius 

averaged over the distribution f(r). Thus the maximum of the 
function h(ρ) determines the mean particle radius. Analogous 
result was obtained in Ref. 7 where a simplified representation 
of integral (4), being valid for small ν, was used. 

Let us integrate the function h(ρ) from 0 to 2R  
 

H = ⌡⌠
0

2R

 h(ρ) dρ = 2R ⌡⌠
0

2R

 ϕ(ρ) dρ – ⌡⌠
0

2R

 ρ ϕ(ρ) dρ . (9) 

 

The first integral in the right side of Eq. (9) is found from 
formula (8). The second integral is calculated by 
substituting the expression for ϕ(ρ) in the form of Eq. (1) 
in it and changing the order of integration. The result is  
 

⌡⌠
0

2R

 ρ ϕ(ρ) dρ = 
1
2 ⌡⌠

0

R

 f(r) r2 dr = r2
–

/2 . (10) 

 

From Eqs. (8)–(10) the expression for determining the rms 
particle radius is finally derived  
 

r2
–

 = 2 (2Rh
max

 – H) (11) 
 

based on the data on the function h(ρ). In analogous way 
we may obtain the relations for higher–order moments of 
the distribution f(r). 

2.2. To eliminate the necessity for the solution of two 
ill–posed problems in reconstructing the function f(r) 
[differentiation of h(ρ) and inversion of integral 
equation (1)], an alternative approach is proposed in this  

paper. Let us first transform to the dimensionless variable 
η = r/R, 0 ≤ η ≤ 1 in Eq. (1). Substituting then Eq. (1) 
into Eq. (5) and changing the order of integration, we 
obtain the integral equation 
 

⌡⌠
0

1

 Q(ξ/η) f~(η) η dη = h~(ξ), 0 ≤ ξ ≤ 1 , (12) 

 

where the unknown function f~(η) = R f(Rη) has a meaning of 
normalized distribution of particles over relative size of 
geometric cross section η, ξ = pν, p = z/2κR, right side  

h
~
(ξ) = h(2Rξ)/2R, and the kernel 

 

Q(x) = 
⎩⎪
⎨
⎪⎧c + 

2
π
 [x ⋅ arccos(x) – y – y3/3] , x ≤ 1,

c ,  x > 1
 (13) 

 

c = 4π/3, y = (1 – x2)1/2 . 
 

Now we consider the properties of the kernel Q(ξ/η) 
in the form of Eq. (13) in the domain Ω = {0 ≤ ξ ≤ 1, 
0 ≤ η ≤ 1}. It is obvious that 
 

0 ≤ Q(ξ/η) ≤ c, (ξ,η) ∈ Ω (14) 
 

Q(ξ/η) = c, η ≤ ξ ≤ 1 . (15) 
 

It can be shown that 
 

∂Q(ξ/η)/∂η = –(ξ/η2) G(ξ/η) , (16) 
 

∂Q(ξ/η)/∂ξ = G(ξ/η)/η , (17) 
 

from which it follows that Q(ξ/η) is the decreasing 
function of η and increasing function of ξ for ξ ≤ η ≤ 1. 

In solving inverse problem (12) it is convenient to 
eliminate the constant factor from the kernel Q(ξ/η) given 
by Eq. (13) after transforming to the modified kernel 
 

Q
1
(ξ/η) = Q(1/η) – Q(ξ/η) , (18) 

 

where Q(ξ/η) = c. As a result, the right side of Eq. (12) is 
replaced by the function 
 

h~
1
(ξ) = h~(1) – h~(ξ) , (19) 

 

which, in contrast to h~(ξ), vanishes everywhere except for the 
finite interval 0 ≤ ξ ≤ 1. Below it is assumed that such 
substitution in Eq. (12) has been made and subscript 1 is 
omitted. 

 
3. INVERSION ALGORITHM AND RESULTS OF 

NUMERICAL SIMULATION 
 
The algorithm analogous to that developed for solving 

Eq. (1) and described at length in Ref. 6 can be used for 
inverting Eq. (12). It should be noted that this algorithm is 

based on approximation of the unknown function f~(η) by a 
piecewise–linear spline with subsequent transition to the 
Euler equation 
 

(ATE–2A + αD) f
α
 = ATE–2h (20) 

 

for a finite–difference analog of the regularizing functional.8 
In Eq. (20) A is the algebraic matrix for Eq. (12), D is the 
smoothing matrix, f

α
 and h are the vectors of solution of 

Eq. (20) and initial data, E = diag {e
1
, ..., em}, ei are the 

weighting coefficients proportional to the error of the ith  
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measurement, and α is the regularization parameter. The 
function 
 

f (+)
α

 = P
1
 P

2
 f

α
 (21) 

 

is taken as an approximate solution to inverse problem (12). 
Here P

2
 is the operator of projection onto a set of nonnegative 

functions, and the operator P
1
 is found from the expression  

 

P
1
 f

α
 = f

α
 

⎣
⎢
⎡

⎦
⎥
⎤

 ⌡⌠
0

1

 f
α
(η) dη

–1

. (22) 

 

Transformation (21) allows us to consider the nonnegative 
character of the unknown solution and its normalization. In 
so doing the regularization parameter can be chosen on 
principle of minimum discrepancies9 according to which the 
quantity α = α

m.d
 is found from the condition of 

minimization of the functional 
 

M(α) =
 
(1/2) {||Af

α
 – h|| + ||Af (+)

a
 – h||} . (23) 

 

Figure 1 shows the results of numerical experiment 
illustrating the efficiency of supplementary 
transformation (21) of the solution f

α
 obtained by inversion of 

Eq. (20). In the numerical simulation the log–normal 
distribution was taken as a rigorous solution f

0
, and a random 

error, whose rms value was uniformly distributed in the 
interval [– ε, ε], was introduced into the initial data. 
Depicted in Fig. 1 is the rms error εf = ||f

α
 – f

0
||/||f

0
|| in the 

solution f
α
 obtained by inversion of regularized equation (20) 

(curve 1). Also shown is the analogous quantity ε f
(+) for the 

solution f 
α

(+) in the form of Eq. (21) (curve 2) as a function of 

the rms error in the initial data ε. Both of these dependences 
were obtained for optimal values of the regularization 
parameter α = α*. From Fig. 1 it is apparent that the 
transformation of the function f

α
 using the operators P

1
 and 

P
2
 in accordance with Eq. (21) decreases the error in the 

solution to the inverse problem by a factor of 1.5–2. 
 

 
 

FIG. 1. Plots of the rms errors εf (1) and ε f
(+) (2) in 

microstructure of the medium vs the rms error in the 
initial data ε (%). 

 

 

Figure 2 displays the behavior of the functional M(α) 
(curve 1) and the rms error in the solution to the inverse 
problem ε f

(+) (curve 2) as functions of α for the error in the 

initial data ε = 10%. As seen from Fig. 2, α
m.d

 > α*, and 

the choice of the regularization parameter on principle of 
minimum discrepancies results in the increase of the 
reconstruction error f 

a
(+) by a factor of no more than 3%. 

 

 
 

FIG. 2. The functional M(α) (curve 1, right ordinate) 
and the error in the solution to the inverse problem ε f

(+)(α) 

(curve 2, left ordinate) as functions of the regularization 
parameter α for ε = 10%. 

 

As an instance characterizing the potentialities of this 
method, Fig. 3 shows the result of reconstructing the two–
modal distribution f(η) which was modeled by superposition 
of two log–normal distributions (curve 1). Curve 2 in 
Fig. 3 is the result of inverting Eq. (12) for 10% error in 
the input data and the optimal parameter of regularization 
α*. Figure 3 shows that a fraction of particles with larger 
modal radius is reconstructed with higher accuracy. It is 
accounted for by the fact that the kernel of the equation 
Q

1
(ε/η) vanishes for η < ξ and increases monotonically as a 

function of ξ when ξ > η. Hence the larger the particle size, 

the larger is their contribution in the function h~
1
(ξ). It 

should be noted that the function h~
1
(ξ) contains no 

information about the particles with size smaller than ξ. 
 

 
 

FIG. 3. Instance of reconstruction of the two–modal 
distribution f(η) in the numerical experiment: 1) model 
and 2) solution to the inverse problem for ε = 10%. 
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FIG. 4. The rms errors ε f
(+) in inversion of Eqs. (12) 

(curve 1) and (1) (curve 2) as functions of the rms error 
in the initial data ε (%). 

 

Finally, Fig. 4 depicts a plot of the relative rms error 
ε f
(+) in the solution to inverse problem (12) (curve 1) as a 

function of the rms error in the initial data ξ compared to 
the analogous dependence obtained for inverse problem (1) 
(curve 2). Both curves have been drawn for optimal values 
of α*. A comparison between the dependences of Fig. 4 
reveals that the inversion of Eqs. (1) and (12) yields 
accuracies close to each other. To put it differently, the 
disperse composition of the scattering media can be 
determined with equal efficiency based on measurements of 
both angular intensity distribution and spatial irradiance 
distribution with proper choice of radiation sources. The  

choice of a preferential method is directly related to its 
possible experimental realization. It should also be taken 
into account that in contrast to the method proposed in 
Ref. 3, the method under study is, as follows from Eq. (4), 
sensitive to spatial inhomogeneities of the extinction 
coefficient. However, this disadvantage turns out to be a 
positive factor which provides the possibility of 
reconstructing the extinction coefficient profile from 
measurements of the OTF of a medium. 
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