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A shear interferometer based on double–exposure recording of a lens Fourier 
hologram of a mat screen is analyzed. It is shown both theoretically and 
experimentally that spatial filtering in the hologram plane results in the formation of 
an interference pattern characterizing the phase distortions of the illuminating 
wavefront and wave aberrations due to lens. 

 
The method of double–exposure recording of a lens 

Fourier hologram of a mat screen, which can be used to 
form shear interferograms in fringes of infinite width using 
diffusely scattered fields when performing spatial filtering, 
was first implemented in Ref. 1. To do this, the mat screen 
placed in the front focal plane of a positive lens was 
illuminated by coherent radiation with a quasiplanar 
wavefront and the Fourier hologram was recorded during 
the first exposure with the use of the off–axis reference 
beam. Prior to the second exposure of a photographic plate, 
placed in the back focal plane of the lens, the phase changes 
induced in the light wave due to the displacement of the 
mat screen in its plane were compensated by means of the 
change in the tilt angle of a quasiplanar reference 
wavefront. As a result, reconstructed subjective speckle 
fields of the two exposures appear to be superimposed in the 
hologram plane with the total tilt angle between them 
determined by the amount of displacement of the mat screen 
prior to the second exposure of the photographic plate. On 
the one hand, this results in localization of the interference 
pattern in the hologram plane because of the phase 
distortions of the reference wavefront. On the other hand, 
subjective speckle fields of two exposures also coincide in 
the Fourier plane of the objective placed behind the 
hologram, resulting in the formation of the interference 
pattern characterizing the wave aberrations due to lens and 
phase distortion of the wavefront illuminating the mat 
screen. It then follows that one can distinguish the phase 
distortions of the reference wavefront and wave aberrations 
due to lens from the phase distortions of the illuminating 
wavefront. Formation and recording of the holographic 
shear interferograms were extended to the cases of the 
Fourier image of the mat screen in the plane of 
photographic plate with the use of a positive lens, when the 
mat screen was illuminated by diverging and converging 
spherical waves.2,3 In this case, the well–known in optics 
manufacture possible formation of a nonaberrational 
spherical wave allows one to control the wave aberrations 
due to lens over the field. 

Some salient features of reconstruction of the complex 
amplitude of the double–exposure field based on the 
coincidence of their subjective speckles in the plane of the 
photographic plate during the recording of the lens Fourier 
hologram of the mat screen illuminated by a quasiplanar 
wave are analyzed in this paper. 

According to Fig. 1a, the Fourier image of the mat 
screen 1 is formed in the plane of the photographic plate 2 
with the positive lens L

1
. It is produced during the first 

exposure by an off–axis reference wave (which is not shown 
in Fig. 1a). Prior to the second exposure, the tilt angle of  

the wavefront of radiation illuminating the mat screen is 
changed by α in the plane (x, z), and the photographic 
plate is displaced at an amount a along the x axis in its 
plane. At the reconstruction stage the hologram 2 (Fig. 1b) 
is illuminated by a coherent plane wave, and the 
interference pattern is recorded in the Fourier plane when 
performing spatial filtering in the hologram plane with the 
use of the opaque screen P

2
 with a circular aperture. 

 

 
 

FIG. 1. The scheme used for recording (a) and 
reconstruction (b) of a double–exposure Fourier hologram 
of the mat screen: 1) mat screen, 2) photographic plate–
hologram, 3) recording plane of the interferogram; L

1
 and 

L
2
 are lenses; P

1
 is the aperture diaphragm; and, P

2
 is the 

filtering diaphragm. 
 

The complex amplitude of a subject field produced 
during the first exposure in the plane (x, y) of the 
photographic plate in the Fresnel approximation, neglecting 
the constant amplitude and phase factors, takes the form 
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where κ is the wave number, t(x
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, y

1
) is the complex 

amplitude of transmission of the mat screen and is a random 
function of coordinates, ϕ
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) is the deterministic function 

characterizing the phase distortions of the quasiplanar 
illuminating wavefront, p
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generalized pupil function4 of the lens L
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 with the focal 

length f
1
 taking into account the axial wave aberrations,  
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and l is the distance between the mat screen and the 
principal plane (x

2
, y

2
) of the lens. 

By well–known transformations, expression (1) can be 
represented in the form 
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is the Fourier transform of the transmission function of the 
mat screen taking into account the phase distortions of the 

illuminating wavefront, P
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lens L
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On the basis of expression (2) we have the phase 
distribution of the diverging spherical wave with radius 
of curvature f

1
, characterized by the quadratic term 

exp[iκ(x
3
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of diffraction of the diverging spherical wave with radius of 
curvature l by the pupil of the lens L

1
.  

Because the width of the function P
1
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3
, y

3
) is of the 

order of λf
1
/d

1
 (see Ref. 5), where λ is the wavelength of a 

coherent light source used for recording and reconstructing 
of the hologram and d

1
 is the diameter of the pupil of the 

lens L
1
, we assume that phase change of the converging 

spherical wave with radius of curvature f 
1
2/l in 

expression (2) is no more than π within the existence 
domain of the function P
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the quadratic phase factor exp[– iκ(x
3
2 + y

3
2)l/2f 

1
2] outside 

the convolution integral of the function P
1
(x

3
, y

3
) for the 

region in the plane of the photographic plate whose 
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As follows from expression (3), in the above–indicated 
region we have the Fourier transform of the input function 
convoluted with the function of an amplitude impulse response 
of the lens L

2
 multiplied by the quadratic phase factor 

characterizing the phase distribution of the spherical wave 
with radius of curvature r = f 

1
2/(f

1
 – l). Therewith, this  

factor characterizes the phase distribution of the diverging 
spherical wave for l < f

1
, and the Fourier–transform extent 

increases in the plane of the photographic plate with the 
decrease of the distance l between the lens and mat screen. 
When l = 0, D = ∞, because the spatial spectrum of the plane 
waves scattered by the mat screen is not bounded by the lens 
L

1
. If l

1
 = f

1
, the radius of curvature r = ∞, and the spatial 

extent of the Fourier–transform in the plane of the 
photographic plate corresponds to the pupil diameter of the 
lens L

1
. When l

1
 > f

1
, the quadratic phase factor in 

expression (3) characterizes the phase distribution of the 
converging spherical wave, and the spatial extent of the 
Fourier transform becomes smaller than the pupil diameter of 
the lens L

1
, decreasing with further increase of the distance 

between the lens and mat screen. In all above–considered 
instances the Fourier transform is scaled by one and the same 
factor 1/λ f

1
, and the scale of the amplitude impulse response 

is identical to that of the Fourier transform of the input 
function as opposed to the case of the illumination of the mat 
screen by radiation of diverging or converging spherical wave 
(see Refs. 2 and 3). 

The complex amplitude distribution of the subject 
field corresponding to the second exposure in the plane 
(x

3
, y

3
) of the photographic plate takes the form 
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where b is the reference wavefront shear due to change in 
the wavefront tilt prior to the second exposure. 

If the condition sinα = a/f
1
 is fulfilled, then 

expression (4) can be brought to a form 
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In the employed approximation the distribution of the 

complex amplitude of the reference wave field during the 
first and second exposures can be expressed as  
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where θ is the tilt angle of the spatially bounded reference 
beam to the plane of the photographic plate, ϕ
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the deterministic phase function characterizing the phase 
distortions introduced in the reference wavefront by the 
aberrations of the illuminating optical system. 
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Let us next take the linear dependence of an amplitude 
coefficient of hologram transmission on the intensity, and 
let the hologram be illuminated by a plane coherent wave in 
the direction of propagation of the reference wave (see 
Fig. 1b). Then the distribution of double–exposure 
diffraction field in the hologram plane takes the form 
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The change in the tilt angle of the illuminating 
wavefront prior the second exposure results in the shift of 
subjective speckles in the focal plane6 of the lens L

1
, which 

is compensated by the displacement of the photographic 
plate in the above–considered case. Actually because 
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function, it then follows from expression (6) that subjective 
speckle fields of two exposures with relative tilt angle 
β = al/f 

1
2 between them coincide in the hologram plane, 

and information about the phase distortions introduced in 
the light wavefront by the lens L

1
 and about distortions of 

the illuminating radiation wavefront is embedded in the 
amplitude–phase distribution of an individual subjective 
speckle in the hologram plane. It then follows that the 
interference pattern due to reference wave aberrations is 
localized in the hologram plane.1 When the opaque screen 
p

2
 (Fig. 1b) with a circular aperture centred on the optical 

axis is positioned in the hologram plane and the width of an 
interference fringe in the interference pattern localized in 
the hologram plane exceeds the diameter of the filtering 
aperture, the diffraction field in the plane of spatial 
filtering is given by the expression 
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where p
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) is the transmission function of the screen 

with circular aperture.7  
Let the light field in the back focal plane of the lens 

L
3
 (see Fig. 1b) with the focal length f

2
 be represented as a 

Fourier integral of the light field in the plane of spatial 
filtering. By using the properties of the Fourier transform, 
we obtain 
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is the Fourier transform of the transmission function of the 
screen with circular aperture. 

As follows from expression (8), if the diameter D
0
 of 

illuminated spot on the mat screen satisfies the condition 
D

0
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1
, then within the region of overlap of images of the 

pupil of the lens L
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 the identical subjective speckles of the 

two exposures coincide. It then follows that the interference 
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we may take this function outside the convolution integral. 
In this case a superposition of the correlating speckle fields 
of two exposures results in the following illumination 
distribution: 
 
I(x

4
, y

4
) ∼ {1 + cos[ϕ

1
(–μ x

4
, –μ y

4
) + ϕ

2
(–μ x

4
, –μ y

4
) – 

 

– ϕ
1
(–μ x

4
+b, –μ y

4
) – ϕ

2
(–μ x

4
 + a l/f

1
, –μ y

4
)]} × 

 

× |t (–μ x
4
, –μ y

4
)⊗P

2
(x

4
, y

4
)|2. (9) 

 
Expression (9) describes the speckle structure 

modulated by the interference fringes. The interference 
pattern has the form of a lateral shear interferogram in 
fringes of infinite width and characterizes the axial wave 
aberrations due to the lens L

1
, as in Ref. 1, and phase 

distortions introduced in the illuminating wavefront. In this 
case, in contrast to Refs. 1, 2, and 3, the sensitivity of the 
shear holographic interferometer to wave aberrations due to 
the lens L

1
 is the higher, the larger is the distance between 

the mat screen and the lens, and it is equal to zero at l = 0. 
It is explained by the fact that the tilt angle between the 
speckle fields of two exposures coinciding in the hologram 
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recording of the lens Fourier hologram discussed in Ref. 9. 
The displacement of the center of filtering aperture in 

the hologram plane along the x axis within the diameter D 
results in the formation in the recording plane 3 (Fig. 1b) of 
the interference pattern, characterizing additionally the off–
axis wave aberrations due to the lens L
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 (see Refs. 2 and 3) 

caused by diffraction of the off–axis plane wave (propagating 
at the angle to the optical axis, for which tanγ = x

0
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) by the 

pupil of the lens, where x
0
 is the coordinate of the center of 

filtering aperture along the x axis. 
Let spatial filtering of the diffraction field in the 

hologram plane be performed on the x axis, when the 
distance from the optical axis is more than D/2. Then its 
distribution at the exit from the filtering diaphragm takes 
the form 
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We represent the light field in the back focal plane of 
the lens L

2
 (Fig. 1b) in the form of the Fourier integral of 

the light field in the spatial filtering plane 
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is the Fourier transform of the transmission function of the 
screen with circular aperture whose coordinates are x
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, 0.  

It follows from expression (11) that speckle fields of 
two exposures coincide. They are identical within the region 
of overlap of the functions of the pupil of the lens L

1
. Let 
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Consequently, the interference pattern characterizing 

the wave aberrations due to the lens L
1
 is also localized in 

the far diffraction zone for the above–considered case of 
spatial filtering of the diffraction field in the hologram 
plane. In this case wave aberrations due to the lens L

1
 are 

caused by diffraction of diverging spherical wave with 
radius of curvature L

1
 propagating at an angle to the 

optical axis, for which tanγ = x
0
/f

1
. 

In the experiment the double–exposure lens Fourier 
holograms were recorded on Micrat–VRL photographic 
plates with the use of a He–Ne laser at a wavelength of 
0.63 μm. As an example, the interference pattern obtained 
when performing spatial filtering by reconstructing a 
hologram with a small–aperture laser beam ∼2 mm in 
diameter is shown in Fig. 2.  
 

 
 

FIG. 2. Shear interferograms recorded when performing 
spatial filtering in the hologram plane: a) on the optical 
axis, b) off the optical axis. 

The hologram was formed with the help of the lens 
with a focal length of 180 mm and a pupil diameter of 
27 mm. The diameter of quasiplanar radiation beam, used 
for illumination of the mat screen, was 50 mm. The distance 
from the mat screen to the lens was equal to 100 mm, and 
the curvature radius of a diverging quasispherical wavefront 
of a reference beam in the plane of photographic plate was 
405 mm. Prior to the second exposure the photographic 
plate was displaced by (0.4±0.002) mm and the tilt angle of 
the illuminating wavefront was changed by 7′40′′±10′′.  

The interference pattern shown in Fig. 2b corresponds 
to the case of reconstruction of the double–exposure 
hologram at the point located on the axis of displacement of 
the photographic plate at a distance of 15 mm from the 
optical axis. In this case the image of the mark in the form 
of the letter T drawn on the mat screen remains at the same 
position, and illumination is produced by the plane wave 
bounded by the aperture of the lens L

1
 (Fig. 1a) and 

propagating at the angle to the optical axis, for which 
tanγ = x

0
/f

1
. As a result, in the case of illumination of the 

mat screen by radiation with quasiplanar wavefront the 
displacement of the hologram from the laser beam at the 
stage of its reconstruction leads to the formation of the 
shear interference pattern characterizing on–axis and off–
axis aberrations due to the lens L

1
, which are summed with 

the phase distortions of the illuminating wavefront 
introduced by the corresponding periphery of the mat screen 
and its part bounded by the aperture of the lens L

1
. It 

should be noted, for example, that with the use of a 
negative lens for the double–exposure recording of the 
Fourier hologram10 different scales of the Fourier 
transmission functions of the mat screen and impulse 
response of the lens due to vignetting of spatial spectrum of 
waves scattered by the mat screen results in recording of the 
larger extent of the illuminating wavefront in the Fourier 
plane in comparison with aperture size of the lens. That 
gives rise to the constant illumination within larger field–
of–view angle. 

Figure 3a shows the interference pattern when 
performing spatial filtering in the hologram plane 
characterizing primarily the spherical aberration in the 
paraxial focus of the illuminating wavefront within the 
aperture of the pupil of the lens L

1
 (see Fig. 1a). In this 

case the double–exposure hologram was recorded when the 
mat screen was placed adjacent to the plano–convex lens 
with a focal length of 250 mm and a pupil diameter of 
47 mm, and the radius of curvature of the reference 
wavefront in the plane of photographic plate was equal to 
the focal distance of the lens. The displacement of the 
photographic plate prior to the second exposure was equal 
to (0.4±0.002) mm, and the tilt angle of the illuminating 
wavefront was changed by 5'30"±10". 
 

 
 

FIG. 3. Shear interferograms characterizing: a) phase 
distortions of the illuminating wavefront and b) phase 
distortions of the reference beam. 
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A characteristic feature of this interference pattern is 
that it does not alter with displacement of the hologram 
from the reconstructing laser beam, except that transition 
from the interference fringe, corresponding to the maximum 
of the interference pattern localized in the hologram plane 
and shown in Fig. 3 a, to the interference fringe, 
corresponding to its minimum, results in the change of 
phase in the filtered interferogram by π, as revealed in the 
case of formation of the shear interferograms for control of 
the wavefront based on the double–exposure recording of 
the lensless Fourier hologram. 

Thus, the given theoretical and experimental results 
demonstrate the formation of the shear interferograms in 
fringes of infinite width using diffusely scattered fields 
based on the coincidence of speckle fields from two 
exposures during recording of the lens Fourier hologram of 
the mat screen illuminated by the radiation with 
quasiplanar wavefront. In this case the interference pattern 
characterizing the wave aberrations due to the lens and 
phase distortions of the illuminating wavefront, is localized 
in the far diffraction zone and the spatial filtering is 
necessary for its recording, while the sensitivity of the 
holographic interferometer to the wave aberrations is the 
higher, the longer is the distance between the mat screen 
and lens. 
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