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The smooth perturbation method (SPM) or Rytov's method is considered in this 
paper in the context of more rigorous theory of multiple wave scattering. It is shown 
that the SPM adequately describes the multiple scattering of waves only by those 
inhomogeneities of a scattering medium for which an observation point is in their near 
zone. 

 

The smooth perturbation method (SPM) or Rytov's 
method is one of the most well–known approximate 
methods for solving the problems on optical and acoustic 
wave propagation through randomly inhomogeneous media 

like the turbulent atmosphere.1-3  
The applicability limits of the smooth perturbation 

method are usually determined by the condition of small 
magnitudes of the field amplitude fluctuations A 
 

<A2> – <A>2

<A>2  � 1 . (1) 

 

The condition given by Eq. (1) is formal mathematical 
in character, and the physical meaning of restrictions 
inherent in this method remains unresolved. 

In this paper we consider the SPM in the context of 
the more vivid theory of multiple wave scattering and 
estimate the applicability limits of the SPM in terms of this 
theory. 

1. In the beginning we outline the basic principles of 
the theory of multiple wave scattering.4 We describe the 
wave propagation in an arbitrary medium by the generalized 
operator equation 
 

(L – V )Ψ = 0 , (2) 
 

where Ψ is the arbitrary wave field, L is the operator 

describing the wave propagation in free space, and V is the 

operator describing the medium. Let us break up the 

operator V into the sum in an arbitrary way 
 

V = ∑ Vj , (3) 
 

where every summand is referred to as the j th scatterer. 

Solution to the problem on wave propagation through 

the medium V in the theory of multiple wave scattering is 

expressed in terms of the solution to the problem of 

scattering by each individual scatterer 
 

(L – Vj) Ψj = 0 . (4) 
 

As is well–known, solution of Eq. (4) is the superposition 

of incident and scattered fields  
 

Ψj = Ψ
0
 + Ψsj . (5) 

 

Although the calculation of the scattered field in each 

concrete case can be a cumbersome mathematical problems 

it can be easy written down in terms of formal operators.  

Usually it is convenient to write down the scattered field in 

terms of the so–called T–matrix of a given scatterer 
 

Ψsj = L–1 Tj Ψ0
 , (6) 

 

where the T–matrix is defined by the Born expansion 
 

Tj = Vj + Vj L
–1 Vj + Vj L

–1 Vj L
–1 Vj + ... (7) 

 

or by the corresponding operator equation. There is no need 

to write it out here. 

Based on the above–made definitions given by 

Eqs. (4)–(7), we can easy find the solution to the problem 

on propagation or multiple scattering of an incident wave in 

a randomly inhomogeneous medium [Eq. (3)] on the level of 

operator relations. Namely, it is determined by the 

expansion in the multiplicity of scattering 
 

Ψ = Ψ
0
 + ∑ L–1 Tj Ψ0

 + ∑
j]l

 L–1 Tl L
–1 Tj Ψ0

 +... . (8) 

 

Physical meaning of expansion (8) is obviously clear. Here 

the second summand means singly scattered field or 

superposition of waves produced due to scattering by each 

individual scatterer, the third summand is the superposition 

of waves scattered sequentially by two scatterers, and so on.  

It should be stressed that relations (4)–(8) are quite 

general and independent of both the nature of a wave field 

and way of division of the medium into the individual 

scatterers. In particular, the scatterers can be not only one–

dimensional for layered inhomogeneous media but also 

three–dimensional. They can either not to overlap each 

other, like aerosols in the atmosphere, or be inserted one 

inside the other, like turbulent eddies of the refractive 

index, and so on. The division of the medium into the 

scatterers is only a matter of convenience for physical 

interpretation or mathematical description. 

2. Now we discuss the application of the theory of 

multiple scattering to such a randomly inhomogeneous 

medium as the turbulent atmosphere. It is clear that 

concrete realization of the turbulent atmosphere distorts, 

i.e., scatters the propagating wave by some inhomogeneities 

in the refractive index existing at the moment and being 

bounded in space. These inhomogeneities are referred to as  
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scatterers in the theory of wave multiple scattering. If we 

divide the turbulent medium into the system of discrete 

scatterers applying a certain rule chosen by us, we can 

interpret the process of wave propagation through this 

medium as the multiple scattering and describe it by 

series (8). 

To create the quantitative theory of wave propagation 

through the turbulent atmosphere in this way, rather 

cumbersome model of scatterers (3) is necessary. This model 

should take into account the wide range of variation of their 

dimensions from the internal to the outer turbulent scale, 

the insertion of the refractive index eddies one inside the 

other, and so on. 

In our case to make qualitative estimation of the 

applicability limits of the SPM, we restrict ourselves to an 

examination of the simplest model of the randomly 

inhomogeneous medium. We assume that the medium 

consists of randomly located inhomogeneities of the close 

size a, which can overlap in space (see Fig. 1). In addition, 

we assume longitudinal and transverse dimensions being of 

the same order and equal to a without loss of generality of 

our model. Very large range of variation of the 

inhomogeneities in size, inherent in the turbulent 

atmosphere, will be taken into account on the qualitative 

level. 

 
 

FIG. 1 Multiple wave scattering in the near zone of 

scatterers is equivalent to shading of some scatterers by 

others. 

 

As mentioned above, expansion in the multiplicity of 

scattering (8) is quite general. Thus we can interpret any 

approximation of the problem on propagation or multiple 

wave scattering in the inhomogeneous media as some 

approximations of the terms of expansion (8), that is, of the 

field of different multiplity of scattering. It is precisely such 

interpretation that is used in the SPM below. 

In the SPM approximation the field is usually written 

down on the basis of the parabolic equation 
 

[ ]2ik 
∂
∂z + Δ

⊥
 – ν( , z)  u(ρ, z) = 0 , (9) 

 

where z is the longitudinal coordinate, ρ = x, y specifies the 
transverse coordinates, Δ

´

 is the Laplacian with respect to ρ, 

v(ρ, z) = k2
 [n2(ρ, z) – 1], k is the wave number, and n is 

the refractive index of a medium. If we compare Eq. (9) 
with generalized Eq. (1), we see that

 
 

Ψ = u(ρ, z) , L = 2ik 
∂
∂z + Δ

⊥
, V(r, r′) = δ(r – r′) ν(ρ, z).(10) 

 

In the simplest case of the plane incident wave u
0
 = 0, the 

field in the SPM approximation on account of Eq. (10) has 
the following simple form:

 
 

u = exp (L–1 ν) . (11) 
 

The division of the medium into a sum of discrete scatterers 
(see Eq. (3)) reduces initial Eq. (11) to the form  

u = exp (∑ L–1 νj) (12) 

which can be represented by the product of multipliers 
 

uj = exp (L–1 νj) . (13) 
 

Let us consider the physical meaning of such 

multiplier. For this purpose we first expand the exponent in 

Eq. (13) in the Taylor series 
 

uj = 1 + L–1 νj + (L–1 νj)
2
 / 2! + ... . (14) 

 

The first summand in Eq. (14) is the incident field. The 
second summand

 
 

ωjB = L–1νj (15) 
 

is the scattered field in the so–called Born approximation 

when the T–matrix is substituted by the first summand of 

expansion (7). 

It is well known that the Born approximation holds 
when the run–on of the phase within the scatterer is small

 
 

k(nj – 1) aj � 1 . (16) 
 

We usually have n – 1 ∼ 106 in the visible range for 

the turbulent atmosphere. In this case, for example, for 

He–Ne laser radiation with the parameter k ∼ 107 m–1, the 

Born approximation holds only for inhomogeneities of size 

a � 0.15 m. Thus for most real inhomogeneities in the 

turbulent atmosphere the Born approximation is 

inapplicable, and the next terms of expansion (7) in 

scattered field must be taken into account.  

Let us show that the terms of series (14) correspond to 

the terms of series (7), but only in the definite spatial 

region. Each inhomogeneity in the turbulent atmosphere is a 

large and optically soft scatterer, that is  
 

k aj � 1 ,  ⏐nj – 1⏐ � 1 . (17) 
 

When a plane wave is incident on such a scatterer, the 

resulting field within it differs from the plane wave only in 

the additional run–on of the phase accumulated along the 

direct rays ρ = const 
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u0
j = exp

⎣
⎡

⎦
⎤(2 i k)–1 ⌡⌠

 
 νj(ρ, z′) dz′  . (18) 

 

Expressions like Eq. (18) are often used in solving the 

problems on wave propagation in the turbulent atmosphere, 

where they are associated with the geometric optics 

approximation. At the same time ray refraction is inherent 

in the geometric optics approximation, but it is ignored 

here. Thus it is more natural to refer to approximation (18) 

as the direct ray approximation (DRA). On the basis of 

parabolic equation (9) the DRA is obtained, if we drop the 
operator Δ

⊥
 describing the field diffraction, i.e., substitute 

the operator L in the parabolic equation by the operator L
0
 

in the direct ray approximation  

 

L
0

 
= 2 i k 

∂
∂z . (19) 

 

As we can see, physically justified expression (18) 

coincides with Eq. (13) obtained from the SPM in the 

context of the direct ray approximation 

u0
j =

 
exp (L–1

0
 νj) . (20) 

 

In this case the scattered field, according to definitions (5), 

is equal to 
 
ω0

j = exp (L–1
0

 νj) L1
 . (21) 

 

Equations (18), (20), and (21) hold not only within 

the region occupied by the scatterer, but also in its near 

zone at distances 

 

z – zj
 
�

 
k a2 (22) 

 
from the scattering center zj located on the z axis, where 

diffraction is still negligible. These expressions become 
incorrect starting from distances z – zj ∼ ka2, where 

scattered field (21) is distorted by Fresnel diffraction. In 

the wave zone of the scatterer  
 

z – zj � k a2 (23) 

 

the Fraunhofer diffraction transforms the scattered field 

into a diverging spherical wave  
 

ωj = fj (n, n
0
) 

exp [i k ⎜r – rj⎜ – i k(z – zj)]
⎜r – rj⎜

 , (24) 

 
where rj = (ρj , zj) specifies the position of the scattering 

center and fj is the scattering amplitude in the direction 

n = (r – rj)/⏐r – rj⏐ ≈ (ρ – ρj)(z – zj). Here |n| < 1 and 

n
0
 is the unit vector along the z axis. In addition, the 

scattering amplitude is the two–dimensional Fourier 

transform of the scattered field in the near zone 
 

fj(n, n
0
) = 

k
2πi ⌡⌠

 
 exp (– i knρ) ω0

j(ρ) dρ . (25) 

 

Now we compare exact expressions for scattered 

field (21) and (24) with series (14), obtained with the use 

of the SPM. In expansion (14) we can substitute the 
operator L by L

0
 for the near zone of scatterer (22). As a 

result, all the powers of the Born approximation of 
scattered field (L

0
–1 νj) given by Eq. (14) are summed in 

exact scattered field given by Eqs. (6), (7), and (21). This 

follows from the relations of the type  
 
(L–1

0
 ν)2

 / 2! = L–1
0

 V L–1
0

 V Ψ
0
 , (26) 

 

which hold only in the direct ray approximation. In the wave 
zone of scatterer (23) powers of the Born scattered field L–1 νj 

have no physical sense. But in this case we can use the 

estimate |ωj| � 1, which is valid for scattered fields in the 

wave zone, and drop all the powers of the field L–1 νj starting 

from quadratic power. 

As a result, the term given by Eq. (13) and obtained 

by the SPM has physical meaning of superposition of 

incident and scattered waves  
 
uj ≈ 1 + ωj . (27) 

 

In the near zone expression (27) transforms into exact 

relation (21). It becomes approximate when diffraction 

appears. As we have satisfied ourselves, the scattered field 
ωj in approximate relation (27) within the wave zone is 

spherical wave (24) having scattering amplitude written 

down in the Born approximation. 

Let us consider the multiple scattering. The 

substitution of Eq. (27) into initial Eq. (12) gives the 

desired expansion in terms of the multiplicity of scattering 

for the SPM  
 

u = exp (∑ L–1 νj) ≈ Π(1 + ωj) = 1 + ∑ ωj + ∑
j l

 ωl ωj + ... .  

 (28) 

As in general expansion (8), here the second summand is the 

singly scattered field, the third summand is the doubly 

scattered field, and so on. 

As we have seen, the most distinctive feature of the 

SPM approximation is the representation of field 

multiscattered by several scatterers by the product of fields 

scattered by each scatterer  
 

ωjlk ...
 = ωj ωl ωk ... . (29) 

 

Let us discuss the applicability limits of 

expressions (28) and (29). On account of Eq. (21), Eq. (28) 

is exact when the observation point is in the near zone of all 

the scatterers intersecting the ray ρ = const (see Fig. 1). In 

this case the wave propagation in the medium is described 

by the direct ray approximation and the multiple scattering  
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is equivalent to multiple shading of some scatterers by 

others (see Refs. 5 and 6). The SPM adequately describes 

this process. When the scatterers and the observation point 

are in the wave zone of each other (see Fig. 2), first, the 

SPM substitutes exact Eq. (25) for the scattered amplitude 

by that in the Born approximation; second, the product of 

fields given by Eq. (29) becomes incorrect.  

 

 
 

FIG. 2 Multiple scattering by scatterers located in the 

wave zone of each other corresponds to re–scattering of 

spherical waves. 
 

Actually, the exact expression, for example, of the 

field scattered by two scatterers can be written down by 

analogy with Eq. (24) 
 

ωjl = fl ⎝
⎛

⎠
⎞r – rl

⎜r – rl⎜
, 

rl – rj
⎜rl – rj⎜

 
exp [ik⎜r – rl⎜ – ik(z – zl)]

⎜r – rl⎜
 × 

 

× fj ⎝
⎛

⎠
⎞rl – rj

⎜rl – rj⎜
, n

0
 
exp [ik⎜rl – rj⎜ – ik(zl – zj)]

⎜rl – rj⎜
 . (30) 

 

The product of scattered waves (29), according to the 

SPM, yields another value  
 

ω′jl = fl ⎝
⎛

⎠
⎞r – rl

⎜r – rl⎜
, n

0
 
exp [ik⎜r – rl⎜ – ik(z – zl)]

⎜r – rl⎜
 × 

 

× fj ⎝
⎛

⎠
⎞r – rj

⎜r – rj⎜
, n

0
 
exp [ik⎜r – rj⎜ – ik(z – zj)]

⎜r – rj⎜
 . (31) 

 

The most substantial difference in field 

amplitudes (30) and (31) is contributed by the following 

terms: 
 

ωjl ∼ 
1

⎜r – rl⎜
 

1
⎜rl – rj⎜

 ,  ω′jl ∼ 
1

⎜r – rl⎜
 

1
⎜r – rj⎜

 . (32) 

 

Of practical interest are the moments of the field 

averaged over configurations rather than the fields at fixed 

configuration of scatterers. Let us estimate the most 

important average intensity of fields (30) and (31). The 

average intensity of singly scattered field is equal to the 

optical thickness of the medium τ 
 

I
1
 = ⏐∑ ωj⏐

2 = c ⌡⌠
 
 

⏐f⏐2

⏐r – rj⏐
2 drj = 

 

= c ⌡⌠
 
 
d⏐r – rj⏐ ⌡⌠

 
 
⏐f⏐2 d

⎝
⎛

⎠
⎞r – rj

⏐r – rj⏐
 = cσ d = τ , (33) 

where c is the number density of scatterers, σ is the cross 
section of scattering by an individual scatterer, and d is the 
linear dimensions of the medium in the direction to the 
observation point. Analogous calculation of the intensity of 
doubly scattered field on account of Eq. (30) yields τ2/2, 
while relation of the SPM (Eq. (31)) yields a double 
amount τ2. Consequencely, product of fields (29) inherent 
in the SPM introduces significant error (starting from 
double scattering). 

Thus the foregoing allows us to formulate the 

applicability limits of the SPM in terms of the theory of 

multiple wave scattering in the following way.  

The SPM holds within the whole spatial region in the 

special case in which it coincides with the small 

perturbation method1-3 
 
exp (L–1 ν) ≈ 1 + L–1 ν , (34) 
 

that is, under condition 
 

⏐L–1 ν⏐ < 1 . (35) 
 

Here the scattered field L-1ν has physical sense of a singly 

scattered field, i.e., superposition of fields scattered by each 

individual scatterer 
 

L–1 ν = ∑ L–1 νj , (36) 
 

In so doing, the field scattered by an individual scatterer is 

taken in the Born approximation.  

When condition (35) is violated, which is characteristic 

of optical and acoustic wave propagation in the turbulent 

atmosphere, formula (11), obtained by the SPM, takes into 

account multiple wave scattering by spatial inhomogeneities of 

a medium only in the case, in which waves come to the 

observation point primarily from the near zone of scattering 

inhomogeneities. The SPM physically adequately describes 

both the scattering by an individual inhomogeneity and 

multiple re–scattering of waves by these inhomogeneities. In 

the opposite case, when diffraction essentially contributes to 

the wave propagated from inhomogeneities to the observation 

point, both scattering by an individual inhomogeneity and 

multiple re–scattering are described physically incorrectly by 

the smooth perturbation method. 

This conclusion is in a qualitative agreement with the 

other well–known estimations of the SPM applicability limits. 

For example, it is well known that the SPM describes fairly 

well the phase fluctuations of wave in the turbulent 

atmosphere even though condition (1) is violated. It is also 

well known that the phase fluctuations are primarily 

determined by the large–scale inhomogeneities. If we assume 

that the condition of near zone is satisfied for these 

inhomogeneities, it becomes apparent the successful use of the 

SPM in this case. The amplitude fluctuations of wave 

propagating in the turbulent atmosphere, on the contrary, are 

engendered by the small–scale inhomogeneities. The field 

scattered by these inhomogeneities has time to essentially  
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diffract during its propagation to the observation point. Thus 

the applicability limits of the SPM given by Eq. (1) are 

analogous to that of the small perturbation method in this 

case. 

It is interesting to discuss in passing the approximation 

similar to the SPM which was proposed by N.P. Kalashnikov 

and M.I. Ryazanov7 for the medium consisting of discrete 

scatterers. In this approximation the field is written down in 

the form of exponent (12) in which the scattered fields are 

written down exactly instead of scattered field in the Born 

approximation  

 

u = exp (∑ ωj) = 1 + ∑ ωj + ∑
j, l

 ωj ωl /2! + ... . (37) 

 

A series given by Eq. (37) differs from that of the 

SPM (see Eq. (28)) only by terms with identical indeces 

j = l and so on. We may neglect such terms for the large 

number of scatterers. Otherwise all the foregoing about the 

applicability limits of the SPM is also true for this method. 
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