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The problem of scattering of a focused incident beam by a spherical particle is 
solved. The specific cases which admit of analytic solution are considered. The 
numerical examples illustrating a dependence of scattering phase function on the 
incident beam geometry are given. 

 

1. INTRODUCTION 
 
A solution to the problem of scattering by elementary 

scattering volume containing independent randomly oriented 
scattering particles was given in Ref. 1 for the case of an 
axisymmetric focused beam, with the property of additivity of 
the Stokes parameters and Müller matrices of an individual 
particle, which is a consequence of incoherence of the 
radiation scattered by particles, being used. 

Such an approach cannot be used for an individual 
particle.1 However, the necessity of solving this problem is 
inspired by the fact that proper allowance must be made for 
the geometry of experiment, for instance, with the use of 
optical particle counters with the different geometry of an 
incident beam. 

In the present paper the generalization of the classical 
Mie solution to the case of a focused incident beam is 
considered. The influence of the incident beam geometry on 
the spatial distribution of scattered radiation is investigated. 

We assume that an incident beam represents the 
superposition of local beams (plane electromagnetic waves) 
propagating inside the cone with angle at its apex 2υ

0
, 

oriented along the Z axis. The result of interaction between 
incident beam and the particle is superposition of the results of 
interaction of each local beam and the particle, with scattered 
waves being coherent. 

 
2. LP– AND CP–REPRESENTATIONS  

OF AN ELECTRIC FIELD 
 
We use a right–handed coordinate system, whose origin 

is located on the particle center, to describe the scattering of a 
plane electromagnetic wave by a spherical particle. The 
propagation direction of a local beam is specified by the unit 
vector n = (θ, ϕ), where θ and ϕ are the polar and azimuth 
angles, respectively, in the spherical system of coordinates. 
The components of an electric field strength are referred to the 
meridional reference plane containing the Z axis and the 
propagation direction of a local beam 
 
E = E

1
 θ + E

2
 ϕ , (1) 

 
where θ and ϕ are unit vectors parallel and perpendicular to 
the reference plane. We note that θ, ϕ, and n are the unit 
vectors of the right–handed coordinate system (θ×ϕ = n), 
whose clockwise rotation through the angle α from the 
direction n is specified in the new coordinate system by new 
components of the electric field2  
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The transformation described by Eq. (2) has eigenvalues 
exp(i α), exp(– i α) and corresponding normalized 
eigenvectors 2–1/2(1, i), 2–1/2(1, –i). The unitary 
transformation2,3  
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can be interpreted as the change of the basis of two linearly 
polarized states (1, 0), (0, 1) (LP–representation) to the basis 
of two circularly polarized states 2–1/2(1, i), 2–1/2(1, –i) 
(CP–representation) corresponding to counterclockwise and 
clockwise polarized electromagnetic radiation of unit intensity. 
The rotation effect in the CP–representation has simpler form 
than in the LP–representation and is described by the 
diagonal matrix2,3  
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3. AMPLITUDE SCATTERING MATRIX 

 

In so–called far zone (r > 1) the components of an 
incident plane electromagnetic wave and scattered spherical 
wave are connected via the relationship4 
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where S is the amplitude scattering matrix, k = 2πλ–1, and 
λ is the wavelength of incident radiation.  

Denoting the transformation given by Eq. (3) by U 
and using Eqs. (3) and (5), we obtain the expression for the 
amplitude scattering matrix in the CP–representation 
 

C(ns; ni) = U S(ns; ni) U
–1 , (6) 
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Using the expression for the amplitude scattering matrix S 
(see Ref. 5, p. 636) and Eq. (7), after simple but 
cumbersome manipulation we obtain the expression for the 
elements of the amplitude scattering matrix5,6 
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where dqm
n (q) are the Wigner functions7 and an, bn are the 

known Mie coefficients.4  
 

4. SCATTERED FIELD FOR THE CASE OF  
FOCUSED INCIDENT BEAM 

 

Changing the reference plane for an incident plane 
electromagnetic wave to meridional one with ϕi = 0 on 

account of Eq. (4), we obtain the following expression to 
within a constant factor: 
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Taking into account the above–mentioned assumptions and 
the coherence of local scattered beams, the components of 
the scattered field for the case of the focused beam 
propagating in directions confined to the conic solid angle Ω 
have the form: 
 

<E 
s
±1 > = ⌡⌠

Ω

 E 
s
±1 dω / ⌡⌠

Ω

 dω . (10) 

 

Let us consider some special cases in which Eq. (10) admits 
of analytic solution. 
 

4.1. Incident beam homogeneous in intensity and 
polarization (E

+1
i (θi, ϕi) = const). The local beams are 

considered to have unit intensity without loss of generality. 
4.1.1. Counterclockwise polarized light (E+1

i
 = 1,  

E–1
i

 = 0). After substitution of Eq. (9) into Eq. (10) and 

integration we obtain  
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The analytic expression of integral (A11) and the main 
properties of the Wigner functions are given in Appendix. 
 

4.1.2. Clockwise polarized light (E
+1
i  = 0, E

–1
i  = 1). 

Using Eq. (A6), we obtain
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4.1.3. Elliptically polarized light. A plane 

electromagnetic wave with arbitrary polarization can be 
represented as a linear combination of basis states in the 
CP–representation, i.e., in this case the components of the 
scattered field are linear combination of Eqs. (11) and (13). 

We note that Eqs. (11) and (13) are simplified to 
known expressions for the amplitudes of scattered field8 
using formulas 
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 <d 
n
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for the case of a parallel incident beam (Ω = 0). 
4.2. Incident beam inhomogeneous in intensity  
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i
) = E

±

i(θ
i
)]. Let us assume that the functions 
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Hereafter we also use the formula7
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where C n1m1n2m2

nm  are the Clebsh–Gordan coefficients.7  

We represent the incident beam as a sum of two 
coherent beams and find the amplitude of scattered field 
separately for each of them. 

 

4.2.1.  
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4.2.2.  
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5. STOKES VECTOR FOR SCATTERED RADIATION 

 
Stokes vector parameters in the CP–representation 

have the form3 
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where asterisk means the complex conjugate value and I, Q, 
V, and U are the Stokes parameters in the  
LP–representation.4 The intensity of scattered radiation is 
defined as 
 

I 
s = (I 

s
0
 + I 

s
–0

) . (20) 
 

Let us consider the particle scattering characteristics for the 
case discussed in paragraphs 4.1.1 and 4.1.2. 

The scattered radiation flux in the whole conic angle 
4π on account of Eq. (A7) has the form 
 

Φ = 
2 π
k2  ∑

n=1

∞

 (2 n + 1) (⏐an⏐
2 + ⏐bn⏐

2) <d 
n
11

(υ
0
) >2 (21) 

 

and coincides with the scattering cross section C
scat

 for the 

case of a plane electromagnetic incident wave. 
 

TABLE I. 
 

  υ
0
   

θs 0° 1° 5° 10° 

0° 1244.47 1115.16
1242.77 

194.655
468.085 

63.5497
74.3988 

10° 11.4185 10.6874
11.7726 

11.0932
32.4256 

32.9131
45.1948 

20° 7.4857 6.9109
7.5328 

5.2298
4.3226 

4.7707
2.2676 

30° 2.7400 2.6691
2.7032 

2.4212
2.6846(–1) 

2.5053
1.6982(–1)

40° 1.3182 1.3262
1.2538 

1.3913
3.8716(–2) 

1.3932
1.6307(–1)

50° 5.3715(–1) 5.6772(–1)
5.0683(–1)

6.2692(–1)
1.8693(–2) 

6.7099(–1)
6.6409(–2)

60° 3.1315(–1) 2.9715(–1)
2.8994(–1)

2.7959(–1)
2.2929(–2) 

2.9123(–1)
4.0759(–2)

70° 7.9111(–2) 9.1894(–2)
7.2457(–2)

1.2395(–1)
1.7701(–2) 

1.3326(–1)
1.3283(–2)

80° 9.5849(–2) 8.6848(–2)
8.9638(–2)

6.9054(–2)
5.8814(–3) 

6.8797(–2)
7.0381(–3)

90° 2.4738(–2) 2.6777(–2)
2.3266(–2)

3.1191(–2)
5.9350(–3) 

3.3794(–2)
3.6968(–3)

100° 1.5444(–2) 1.7164(–2)
1.5086(–2)

1.9866(–2)
7.2455(–3) 

2.1066(–2)
4.1076(–3)

110° 5.4005(–3) 9.7217(–3)
5.7367(–3)

2.0476(–2)
1.8562(–2) 

2.6723(–2)
9.6380(–3)

120° 2.9429(–2) 3.8332(–2)
2.9868(–2)

5.0239(–2)
2.8427(–2) 

4.4060(–2)
5.2118(–3)

130° 3.6375(–2) 4.2932(–2)
3.3305(–2)

7.6169(–2)
6.0338(–2) 

8.9188(–2)
1.3136(–2)

140° 2.4655(–1) 2.2934(–1)
2.3325(–1)

2.1549(–1)
2.7344(–2) 

1.8985(–1)
3.4051(–2)

150° 1.2251(–1) 1.2867(–1)
1.1883(–1)

1.6019(–1)
1.1811(–1) 

1.7927(–1)
1.8599(–1)

160° 7.0563(–2) 8.1232(–2)
6.8005(–2)

1.1139(–1)
7.1432(–2) 

1.3792(–1)
4.9046(–2)

170° 1.3890(–1) 1.4444(–1)
1.3955(–1)

1.6606(–1)
6.1376(–1) 

1.7916(–1)
1.5395

180° 2.0613(–1) 1.8439(–1)
1.9812(–1)

3.3481(–1)
2.5994(–1) 

2.0715(–1)
1.5722

 

The scattering phase function p(θs) = 4πI 
sΦ–1 satisfies 

the normalization condition 
 

1
4 π ⌡⌠

4 π

 p d ω = 1 . (22) 

 
Table I presents the results of calculation of the 

scattering phase function for different geometry of an 
incident beam (values in denominator). The values in 
numerator are the results of calculation of the scattering 
phase function of an elementary scattering volume 
containing independent scatterers.1,9 Diffraction parameter 
ρ = 50, refractive index of particle mp = 1.33 as well as the 

geometry and structure of an incident beam were the same 
for both cases. Using Eqs. (16), (20), and (A7), as well as 
the properties of the Clebsh–Gordan coefficients,7 we 
obtain for the asymmetry <cosθ> (see Ref. 4) 
 

<cos θ> Φ = 
4 π
k2  Re ∑

n=1

∞
 n (n + 2)

n + 1  (an a*n+1
 + bn b*n+1

) ×  

 

× <d 
n
11

(υ
0
) ><d 

n+1
11

(υ
0
) >+ 

2 n + 1
n (n + 1) (an b*n) <d

n
11

(υ
0
) >2 . (23) 

 
Eq. (23) coincides with the well–known Debye expression4 
for the case of a plane incident wave (υ

0
 = 0).  

In conclusion we note that formulas analogous to 
Eqs. (21) and (23) can be easy obtained for the cases 
discussed in paragraphs 4.1.3 and 4.2. 

 
APPENDIX 

 
The Wigner functions dqm

n (q) are connected with the 

generalized spherical functions Pqm
n (cosq) (see Ref. 10) via 

the relationship2  
 

d 
n
qm(θ) = i m–

 
q
 P 

n
qm(cos θ) , n ≥ max (⏐q⏐, ⏐m⏐) = n

*
 . (Α1) 

 

Let us consider the Wigner function properties using the 
properties of generalized spherical functions and relationship 
(A1).  

The Legendre polynomials and associated Legendre 
functions are expressed in the form7,10 
 
d 

n
00

(θ) = P 
n
00

(cos θ) = Pn(cos θ) , (Α2) 

 

d 
n
0m(θ)=i m P 

n
0m(cos θ)=(– 1)m[ ](n – m)!

(n + m)!

1/2

P 
m
n (cos θ),(Α3) 

 
where 
 

Pn(x) = 
1

2n n!
 
d 

n

d xn (x
2 – 1)n , (Α4) 

 

P 
m
n (x) = (– 1)m (1 – x2)m/2 

d 
m

d xm Pn(x) . (Α5) 

 
The Wigner functions have the following symmetry 

properties7,10: 
 
d 

n
qm(θ) = d 

n
–m–q(θ) = (– 1)m–q d 

n
mq(θ) (Α6) 
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and satisfy the orthogonality condition 
 

⌡⌠
0

π

d θ sin θ d 
n
qm(θ) d 

n′
qm(θ) = 

2
2 n + 1 δnn′ , (Α7) 

 
the recurrent relationship 
 

n (n + 1)2 – m2 (n + 1)2 – q2 d 
n+1
qm (θ) + 

 

+ (n + 1) n2 – q2 n2 – m2 d 
n–1
qm (θ) = 

 
= (2 n + 1) [n (n + 1) cos θ – m q] d 

n
qm(θ) (Α8) 

 
with the initial conditions 
 

d 
n
*qm(θ) = 

(– 1)(q–m+⎢q–m⎢)/2

2n*
 ⎣
⎡

⎦
⎤(2n*)!

(⎢q – m⎢)! (⎢q + m⎢)!

1/2

 × 

 

× (1 – cos θ)⎢q–m⎢/2 (1 + cos θ)⎢q+m⎢/2 , (Α9) 
 
as well as the relation 

 
d

d θ d 
n
qm(θ) + 

q – m cos θ
sin θ  d 

n
qm(θ) = 

 

= – (n – m) (n + m + 1) dn
q m+1

(θ) . (Α10) 

 

We make use of Eqs. (A3), (A5), (A6), and (A10) to obtain 
 

<d 

n
11

(υ)>=
sin υ [P1

n (cos υ) + P n
–1(cos υ)] + Pn (cos υ) (1 – cos υ)

n (n + 1) (1 – cos υ) . 

(Α11) 
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