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The generalized parameters of an integral light scattering phase function for a 
polydispersed suspension of the spherical particles are considered. The application of 
these parameters to simplify this problem to that for monodispersed suspension is 
analyzed on the basis of the obtained analytic expression for polydispersed integral 
scattering phase function in the Rayleigh–Gans–Debye approximation. The calculated 
results are presented.  

 
Of special interest in different fields of astronomy, 

biophysics, chemistry, and medicine is light scattering by 
optically "soft" particles whose refractive index is close to 
that of a surrounding medium (their relative refractive 

index m → 1 or ⏐m – 1⏐ � 1, see Refs. 1–3). A whole class 

or group of "soft" anomalous diffraction (AD), i.e., large 

particles with the diffraction parameter ρ � 1, was 

considered in close detail in Ref. 4. There are practically no 
papers aimed at the application of the generalized 
parameters of polydispersed suspensions of spherical 
particles in the Rayleigh–Gans–Debye (RGD) range of 

small phase shift Δ = k d⏐m – 1⏐ � 1, where d is the 

maximum diameter of particles.  
The present paper is aimed at search for the 

generalized parameters of an integral phase function of light 
scattering by spherical particles in the RGD approximation. 
By the term integral scattering phase function is meant the 
relative fraction of energy flux, scattered within a cone with 
the vertex angle θ, of total light scattering.  

We use the equation obtained in Ref.5 for the light 
intensity scattered within a cone with the vertex angle θ 
(by an individual spherical particle) 
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u  du is the integral cosine, 

b = sin(θ/2), γ = 0.577216 is the Euler–Maskeroni 
constant, and a is the particle radius. From Eq. (1) we may 
derive the scattering efficiency factor K

s
 since the vertex 

angle θ = π and hence b = 1, i.e.,  
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coinciding with the formula which has already been 
obtained by Rayleigh.2,4,6 

The integral scattering phase function F(2ρb) for an 
RGD sphere is the ratio of Eq. (1) to Eq. (2): 

 

F[2 ρ sin (θ/2)] = 
Iθ
k
s

 . (3) 

 
We hereafter use the probability density functions in 

the following form4,8: 
a) gamma distribution 
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where β = (μ + 1)/a– and a– is the mean radius of particles 
in polydispersed suspension;  

b) power–law distribution  
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(5) 
where R = a

max
/a

min
; a

min
, and a

max
 are the minimum and 

maximum radii of particles in suspension. To obtain the 
integral scattering phase function of polydispersed 
suspension of spherical particles, Eqs. (1) and (2) must be 
integrated taking into account the probability density 
function and particle cross section. In such a manner,  
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To obtain the integral scattering phase function 
<F(θ)>, we need only to calculate <I(θ)> in Eq. (6) taking 
into account that <k

s
> = <Iπ>. Therefore, using Eqs. (1) and 

(4), we obtain 
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The substitution ρ = ka was employed in Eq. (7), i.e., 

it was integrated over ρ rather than over the radius a.  
After integration of Eq. (7) we finally obtain the 

relation for <Iθ> in the form of a finite sum of elementary 

functions.5 The integral scattering phase function <Iθ>/<ks
> 

for the power–law distribution can be obtained in a similar 
way (see Ref. 5). 

Four different parameters were chosen for generalized 
ones. In the case of gamma distribution they have the 
following form: 
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where k is the wave number.  
 

The generalized coordinates are denoted by t
i 
θ. In the 

case of the power–law distribution the generalized parameters, 
in analogy with the gamma distribution, have the following 

form: 
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A comparison was made for the power 4, which is most 
widely used in experimental distributions, as well as in the 
ranges of variation of the particle size 5–25 and 5–15 (see 
Refs. 4, 8, and 9). 

The results of comparison are given in Table I. The 
values of the integral phase function of scattering by an 
individual particle calculated from formula (3) and by an 
ensemble of spherical particles are compared; in addition, the 
values of t

i 
θ are no more than 3, i.e., the scattering at small 

angles is analyzed. The relative error is calculated using the 
formula 
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It is seen from the Table I that the relative error in 
calculating <ρ> decreases with increase of μ in the case of 
gamma distribution. Nevertheless, for "real" suspensions 
of particles of arbitrary size, i.e., for μ < 10, the error 
reaches –60%.  

The situation is much better for the second generalized 

parameter <ρ6>/<ρ4>, because the error is no more than 
12% even at μ = 7. Naturally, it decreases with increase of 
μ and becomes less than 8% already at μ = 10 under the 
same conditions.  

 
 

TABLE I. Maximum relative error in calculation of the integral phase function of light scattering by an individual 
particle in comparison with scattering by an ensemble of spherical particles, obeying the gamma and power–law 

distributions, in the generalized coordinates. 
 

Generalized parameter 

Distribution <ρ> <ρ6>/<ρ4> <ρ4>/<r2> 
3
4 k<V>/<S> 

Gamma 
μ = 7 , β = 0.1 

 
– 59% 

 
12% 

 
– 30% 

 
– 35% 

μ = 10 , β = 0.1 – 49% 8% – 24% – 29% 

Power–law 
ν = 4 
ρ
min

 = 5 , ρ
max

 = 25 

 
 

– 80% 

 
 

+ 18% 

 
 

– 51% 

 
 

– 32% 

ν = 4 
ρ
min

 = 5 , ρ
max

 = 15 
 

– 57% 

 
+ 10% 

 
– 33% 

 
+ 17% 

 
The error is less than –30% at μ = 7 for the third 

generalized parameter <ρ4>/<ρ2> chosen from the 
condition of minimization of the error in <k

s
>. For the 

fourth generalized parameter k<V>/<S>, characterizing 
the ratio of the mean volume to the mean cross section of 
suspended particles, the error is small and is no more 
than –35 to –30% for μ < 10, although it decreases  

insignificantly with further increase of μ. The behavior of 
relative error is analogous for the power–law 
distribution. Obviously, the absolute value of the error 
decreases considerably with decrease of ρ

max
, when 

suspension tends to monodispersed one.  

Thus based on the results of comparison we may 
conclude that only the second generalized parameter  
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<ρ6>/<ρ4> provides the minimum error in the region of 
small–angle scattering in comparison with the phase function 
of scattering by an individual particle. The most "natural" 
parameter <ρ> (mean particle size) gives the rough estimate. 
However, it should be noted that the relative refractive index 
was disregarded in comparison (because we set m = 1). In 
practice, the influence of the last factor results in the 
considerable decrease of relative error thereby providing the 
use of the mean particle size <ρ> with an error of about 30%4.  
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