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This paper concerns with the problem on functioning of an adaptive optical 
system under conditions of the wave–front corrector parameters uncertainty and 
influence of an external stochastic disturbance. An algorithm for the adaptive control 
over the wave–front corrector which minimizes uncertainty of its parameters and the 
external stochastic disturbance is synthesized using methods of the parametric 
identification and optimum control. 

 

Synthesis of algorithms for functioning of the adaptive 
optical systems (AOS) has been performed in Refs. 1–4, 
which consists of the synthesis of algorithms for processing 
filtration of the AOS incoming signals and the synthesis of 
algorithms for control over its active elements – the 
wavefront corrector (WFC). 

The algorithm for optimal control was developed in 
Ref. 4, however, some adverse factors, such as vibrations, 
noise of drives, weight and thermal disadjustments and the 
like were not taken into account. Although they have 
negative effect on the functioning of an optical–mechanical 
channel of the optical system. Thus, it is of interest to 
develop the adaptive control algorithm of the AOS active 
element minimizing the disturbances to reduce these 
negative effects. 

In Ref. 4 the process of the WFC AOS functioning was 
described by the stochastic differential equations of the form: 
 

z
⋅
(t) = A(t) z(t) + B(t) u

α
(t) , (1) 

 

α∼(t) =C z(t) , (2) 
 
where z(t) is the n–dimensional vector of state of the object 
to be controlled; A(t) is the matrix of n×n dimensionality; 
B(t) is the column–vector of n×1 dimensionality; C(t) is 

the vector–row of 1×n dimensionality; α∼(t) is the 
controllable value corresponding to slope angles of corrector 
relative to the input pupil plane of an optical system in two 
orthogonal directions; and u

α
(t) is the voltage applied to 

the drives of the corrector. 
The elements of A, B, C matrices are suggested to be 

known and assigned, they are selected in accordance with 
properties of the WFC AOS drives.  

However, models (1)–(2) do not take into account the 
disturbances appearing under the real conditions. Therefore 
in experience, some individual elements of A and B matrices 
can be unknown. Besides, the noise of disturbances should 
be also accounted for. In this case the process of functioning 
of the AOS active element should be described by stochastic 
differential equations of the form 
 

z
⋅

1
(t) = A′(t) z

1
(t) + B′(t) u

α1
(t) + ω(t),  

 

α∼
1
(t) =C z

1
(t) , (3) 

 

where z
1
(t), A′(t), B′(t), u

α1
(t), C, and α∼

1
(t) have the same 

dimensionalities and sense as z(t), A(t), B(t), u
α
(t), C, and 

~α(t) in Eqs. (1)–(2), but a set of elements of Aα∼
1
(t)(t), 

B′(t) matrices is unknown; ω(t) is the random process with 
zero expectation and spectral density matrix S

ω
.  

To synthesize the adaptive control algorithm, let us 
apply the identification method, which allows one, under 
conditions of uncertainty, to obtain estimations of unknown 
parameters of the system and disturbances as well as to use 
them to compensate for the negative effects of these 
uncertainties. 

By substructing Eq. (2) from Eq. (3) one can derive a 
linearized model of the disturbances for controls under 
consideration 
 

δz
⋅
(t) = ΔA(t) δz(t) + ΔB(t) δu

α
(t) + ω(t), 

 

ε = α∼(t) – α∼
1
(t) =C δz(t) , (4) 

 

where 
 

ΔA(t) = A′(t) – A(t) ; ΔB(t) = B′(t) – B(t) ;  
 

δz(t) = z(t) – z
1
(t) ;  δu

α
(t) = u

α
(t) – u

α1
(t) . 

 

The determination of the control law with feedback for 
the equations describing the disturbance, requires that the 
system parameters from Eq. (4) be known at every instant 
of time in controlling over the WFC AOS. To determine the 
elements of ΔA and ΔB matrices one make use of the 
parametric identification method, in a frame of definition of 
which the problem on control over the corrector is reduced 
to the problem on determination of δu

α
(t) that approaches 

δz(t) to zero over the time of control over the WFC. To 
determine δu

α
(t) for compensating disturbances, we can use 

the one–step law of the optimal control.5  
Let us solve the problem in the discrete time. For that, 

let us take sampling of Eq. (4) to obtain the discrete 
equations for determination of the parameters required 
 

δz(kT + T) = F(kT) δz(kT) + G(kT) δu
α
(kT) + ω(kT) , (5) 

 

where T is the period of sampling; k = 0, 1,..., m – 1; 
δu

α
(kT) is a piece–constant incoming vector of the control  
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within the time interval between any two sequential 
moments of sampling; δz(kT) is the n–dimensional 
disturbed vector of a state, which is determined by the 
following expression: 
 

δz(kT) = Γ(kT, t
0
) z(t

0
) +⌡⌠

t
0

kT

 
 
Γ(kT, t) ΔB(t) δu

a
(t) dt + ω(kT). 

 
where Γ(kT, t

0
) is the transient matrix of a system state; 

F(kT) and G(kT) are the matrices of (n×n) and (n×1) 
dimensions, respectively, which are determined as follows: 
 
F(kT) = Γ[(k + 1) T, kT] ; 
 

G(kT) δu
α
(kT) + ⌡⌠

kT

k + 1

 
 
Γ[(k + 1) T, t] ΔB(t) δu

α
(t) dt  ; 

 

ω(kT) is the n–dimensional vector of the discrete "white" 
sequences with zero mean and dispersion matrix D

ω
. 

The problem on the system parameter determination 
can be solved using the different algorithms such as the 
rms method, method of maximum as well as variational 
and stochastic approximation methods. To determine the 
system parameters in F(kT) and G(kT) matrices, the 
recurrent scheme can be best used owing its simplicity. In 
this case the following assumptions should be accepted: 

1) The system parameters change slowly, and the 
velocity of their change is much as fast as velocity of 
adaptation. 

2) Measurement errors are negligible. 
3) The variable states z(kT) in Eq. 5 can be 

measured. 
In order to apply the recurrent identification 

algorithm to Eq. 5 by the rms–method, one should 
transform the system of equations to the form being 
convenient for calculation. Having written the ith row of 
unknown parameters of ΘT

i
–adaptive system in terms of 

(n + 1)–dimensional vector in the kth instant of time we 
have 
 

Θ
T
i
(kT) = [ f

i1
(kT), ..., f

in
(kT), g

i
(kT)] ,  i = 1, ..., n . (6) 

 

Let us determine in the same way the output and the 
input of disturbed system from Eq. 5 by (n + 1)D vector at 
the kth instant of time  
 

xT(kT) = [δz
1
(kT), ..., δz

n
(kT), δu

α
(kT)] , (7) 

 

as well as the state at the kth instant of time by the n–
dimensional vector 
 

δzT(kT) = [δz
1
(kT), ..., δz

n
(kT)] . (8) 

 

Finally, the system according to Eq. 3 can be 
rewritten as follows: 
 

δz
i
(kT + T) = xT(kT) Θ

i
(kT) + ω

i
(kT) , (9) 

 

i = 1, ..., n . 
 
 

In this terms the parameters in each column Θ
i
(kT) are 

required to be determined based on measurements xT(kT). 
The best estimation can be obtained by minimizing the 
prediction criterion 
 

I
pr
(Θ

i
) = M

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
k=0

m–1

 
 
[δz

i
(kT + T) – xT(kT) 

∧
Θ

i
(kT)]2 → min

θ
, (10) 

 
where M is the expectation operator. 

Minimizing the prediction criterion (10) based on 
the adaptive approach, relative to unknown parameters of 
the vector Θ

i
 we obtain the recurrent scheme of 

identification using the rms–method in the real time.6  
 
∧
Θ

i
(kT + T) = 

∧
Θ

i
(kT) + P(kT) x(kT) × 

 

× [δz
i
(kT + T) – xT(kT) 

∧
Θ

i
(kT)] ; 

 
∧
Θ(0) = Q

0
 ; 

 
P(kT + T) = P(kT) – γ(kT) P(kT) x(kT) xT(kT) P(kT) ; (11) 
 
γ(kT) = [xT(kT) P(kT) x(kT) + 1]–1 ; 
 

P(0) = βI ,  β � 1 . 

 
As is seen from recurrent equations (11), the 

estimation of 
∧
Θ

i
(kT + T) at (kT + T)th time period is 

equal to the previous estimation 
∧
Θ

i
(kT) corrected by the 

value proportional to [δz
i
(kT + T) – xT(kT)

∧
Θ

i
(kT)]. The 

term xT(kT)
∧
Θ

i
(kT) is the value δz

i
(kT + T) to be 

predicted, which is based on estimating the 
∧
Θ

i
(kT) 

parameters and measurement vector x(kT). The 
P(kT)x(kT) elements of the vector are the weight 
coefficients determining a value of correction of the 
previous estimation for obtaining the new estimate  
∧
Θ

i
(kT + T). 

By defining the estimation parameters of the F(kT), 
G(kT) matrices, the law of optimal control over the AOS 
corrector can be formulated that takes into account the 
disturbances, satisfies the conditions of Eqs. (3) and (5), 
and also minimizes the criterion of the form 
 
I(kT) = 1/2 M × 

 

×

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
k=0

m–1

 
 
[δα

1
T(kT + T) Θδα

1
(kT + T) + uα1

T (kT) R uα1
(kT)] ,(12) 

 

where δα
1
(kT) = α(kT) – ∼α

1
(kT) is the error of 

correction for wavefront distortion with account of  
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disturbances; Q is the weight matrix determined as 
semipositive, and R is the weight matrix determined as 
positive. 

By using the Pontryagin principle5 of a maximum, 
one can show that the optimal control minimizing the 
functional (12) will satisfy the condition 
 
u

opt
(kT) = u*(kT) + δu*(kT) = 

 

= – [R + BT(kT)]–1B(kT) Q A(kT) z
∧
(kT) – 

 

– [R + G
∧

T(kT) Q G
∧

(kT)]–1 G
∧
(kT) Q F

∧
(kT) δz(kT) , 

 
where u*(kT) is the optimal control without disturbances, 

which has been synthesized in Ref. 4; z
∧
(kT) = 

⎣
⎡

⎦
⎤α

∧
(kT)

z(kT)
 ; 

∧
α(kT) is the wavefront state estimation; δu*(kT) is the 
optimal control minimizing the correction errors over 

disturbances. F
∧
(kT) and G

∧
(kT) are the system parameters 

obtained using the identification algorithm (11). 
The structural scheme of the WFC adaptive control 

is demonstrated in Fig. 1. 
Under conditions of uncertainty and influenced 

stochastic external disturbances, the suggested approach 
allows one to reduce the AOS functioning problem to a set  

of equations. In a frame of such a description of the quality 
determined by functionals (10) and (12), the WFC adaptive 
control algorithm, that has been developed, provides the 
best functioning of the AOS. 
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