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Feasibility of and prospects for the modified method of clustering of 
arguments (MMCA) are discussed as applied to the problems of forecasting 
(retrieving) the vertical profiles of temperature and the zonal and meridional 
components of wind velocity in the free atmosphere from the data obtained at lower 
levels, with no experimental data on the forecasted parameters. Examples show the 
advantages and efficiency of such an approach, which significantly extends the 
range of its application to the problems of atmospheric sounding, including lidar 
sensing techniques. 

 

Now, because of greater requirements on quality of 
the data of atmospheric monitoring imposed by different 
branches of the national economy, new means and 
techniques for routine monitoring of the state of 
atmospheric environment are getting a tremendous boost. 
Among them the techniques of active remote sensing, 
which use laser sources of radiation, feature definite 
advantages,1,2 since they provide estimate of the 
atmospheric fields with exceptionally high temporal and 
spatial resolution and retrieval of the necessary 
geophysical data in real time. 

However, despite the apparent advantages of the 
techniques of laser sounding over in situ (e.g., 
radiosonde) measurements, they have some grave 
disadvantages as well. The main disadvantages are 
insufficient accuracy of the data obtained in the free 
atmosphere (that is, above 2–3 km) with ground–based 
lidar systems and rapid increase of the measurement error 
as the length of the atmospheric beam path increases. For 
example, air temperatures are retrieved by lidars at 
distances longer than 2 km with an error worse than 2°C 
(see Ref. 2), which exceeds the rejection criterion for air 
temperature data (1°C for the troposphere) established by 
the World Meteorological Organization. 

Therefore, it is currently recommended to apply an 
integrated approach, which would compensate for those 
drawbacks. It is based on a joint use of accurate lidar data 
obtained at low altitudes (up to 1–3 km), complimented 
above by the meteorological parameters retrieved using various 
mathematical models (e.g., hydrodynamic or physico–
statistical). This approach is particularly efficient for estimate 
of the vertical profiles of temperature and wind velocity, 
which are the basic atmospheric parameters used to forecast 
the weather and to model the climate. 

However, it appears impossible to solve the problem 
of vertical profiling of meteorological elements for 
hydrodynamic forecast models, since such models are 
cumbersome. They feature limiting resolution and 
prediction range and call for the data of observations that 
would cover almost the whole hemisphere. This entails 
lengthy computations and supercomputers. In addition, 
the contribution from errors in the initial data to the  

errors in the output model results reaches 18–25% for 
hydrodynamic forecast models.3 

All things considered, it appears more feasible to use 
the physico–statistical techniques, which have found wide 
application to the problem of retrieving and forecasting 
the vertical profiles of meteorological parameters (see, 
e.g., Refs. 4–6). Of such techniques, the newly developed 
modified method of clustering of arguments stands out.7 
It is quite simple, obviates the necessity of large amount 
of initial data and lengthy computations, does not call for 
any preliminary averaging of long–term series of the 
empirical data, and finally, offers a possibility to 
synthesize a prognostic model under conditions of partly 
or fully uncertain knowledge of the structure of the 
modeled process and properties of noise in the data used. 
We use this approach to solve the problem of retrieving 
such characteristics of the free atmosphere as its vertical 
temperature and wind profiles from the data of 
spatiotemporal observations. 

Before proceeding to the results of statistical 
estimate (retrieval) of the characteristics of the free 
atmosphere by the MMCA algorithm, we consider its 
certain theoretical grounds. 

The basic idea of the MMCA algorithm is as 
follows.7 Based on a sample of experimental data, a 
certain set is automatically generated of prognostic 
models of different structure within a prescribed class of 
functions, from which one or several best models are 
selected (against a certain performance criterion), and 
then, using the model chosen, the spatiotemporal forecast 
(or retrieval) itself is made. 

Apparently, to solve the formulated problem, one 
needs to know the type and length of the sample of 
experimental data; to prescribe the class of basis 
functions (operators), from which the set of the 
prognostic models is formed; to prescribe the way by 
which the structure of different models will be generated; 
and, to choose a technique for estimate of the parameters 
of generated models and a technique for minimization of 
the performance criterion. 

As has already been mentioned, in our case we used 
the spatiotemporal observations of the form 
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{ Yh, t, h = 0, 1 , ... , h*; t = 1, 2, ... , N }

{ Yh, t , h = 0,1 , ... , h
–

 £ h*; t = N + 1}
 (1) 

 
for our initial experimental data. Here h is altitude and t is 
time of observations. For our basis functions we selected 
mixed difference dynamic–stochastic models of the form 
 

Yh, N+1
 = ∑

s=1

N*

 Ah, τ
 Yh, N+1–τ

 + ∑
j=0

h–1

 Bh, j Yj, N+1
 + εh, N+1

 ,  

(h = h
∼
 + 1, ... , h*) , (2) 

 
where N* is the serial number of the time lag (N* < [N – h – 
– 1]/2); Ah, 1, ... , Ah, N and Bh, 0

, ... , Bh, h–1
 are the 

unknown parameters of the model; and, εh, N+1
 is the model 

discrepancy. 
We followed Ref. 7 to determine the best model (2) 

and to make successful forecasts on its basis. Taking all the 
initial data (1), we divide them preliminarily into the 
sample A (it contained observations up to the instant 
t = N – 1 inclusive) and the sample B, which included only 
the observations at the instant t = N. In addition, two 
special methods were used, namely: 

1) The method of directed cluster sampling to optimize 
the structure of the model, including two–stage model 
selection based on: 

– forecast resultant error (after Akaike) of the form 
 

FRE = 
(N – N* – 1) + s
(N – N* – 1) – s RSS(s) , (3) 

 

where  

RSS(s) = ∑
j = 1

N–N*–1

 [Y
Ð

h, N–j – Y
Ð

h, N–j (s)]
2 

 

is the residual sum of squares for the current model  

Y
Ð

h, N–j (s), containing s nonzero estimates of its 

parameters. Here the value of Y
Ð

h, N–j is estimated using 

the expression 
 

Y
Ð

h, N–j = X Q
Ð

, X ∈ M
(N–N*–1)×(N*+h) 

,  Q
Ð

 ∈ RN*+h , (4) 
 

where Q
Ð

 = [A
Ð

h, 1
 ... A

Ð

h, N*
 B
Ð

h, 0
 ... B

Ð

h, h – 1
]T is the minimum 

estimate of the parameters over the sample A, calculated from 
special formulae (here T denotes the operation of 
transposition), Rk is Euclidian space of k–dimensional vectors, 
and Mm×p is space of m × p matrices; 

– root–mean–square forecast error from the reference 
sample (sample B): 
 

⏐Yh, N – Y
Ð

h, N(s)⏐2 → min , (5) 
 

where the minimum is sought over all the N* + h structures, 

each being determined by the individual model Y
Ð

h, N–j(s). 

2) The method of minimax estimate used to obtain the 
estimates of the model parameters, that guarantees the 
quality of the respective forecast estimated using the 
inequality 
 

E⏐E(Yh, N+1
) – Y

Ð

h, N+1
⏐2 ≤ δh, N+1 

, (h = h
–

 + 1, ... , h*) , (6) 

 

where E(⋅) is the operator of mathematical expectation, 
performing averaging over all the realizations of 
observational errors, Yh, N+1

 and δh, N+1
 are the minimax 

estimates, depending on the variance of observational errors 
and a priori information on the maximum permissible errors 
in the forecast. 

The technique described above was applied to the 
problem of retrieving the vertical profiles of temperature (T) 
and the zonal (Vx) and meridional (Vy) components of wind 

velocity in the free atmosphere. Performance criterion and 
efficiency of the MMCA were then estimated from the long–
term (1961–1975) observations at four aerological stations: 
Keflavik (63°57′ N, 22°37′ W), Stavanger (58°33′ N, 
05°38′ E), Rome(41°48′ N, 12°38′ E), and Miami (25°49′ N, 
80°17′ W), which are in different physical and geographical 
regions of the northern hemisphere. Retrieval accuracy for the 
above physical parameters was estimated using the standard 
(root–mean–square) errors δ and the relative errors δ/σ in per 
cent (here σ is the root–mean–square deviation characterizing 
the natural variability of each studied parameter). 

 
TABLE I. Standard retrieval errors δ and root–mean–
square deviations σ of temperature (T,°C) and the zonal 
(Vx , m/s) and meridional (Vy , m/s) components of 

wind velocity from the data obtained at the ground and 
barometre altitude of 850 hPa. 
 

Barometre T Vx Vy 

altitude, 
hPa 

δ σ δ/σ,
% 

δ σ δ/σ, 
% 

δ σ δ/σ,
% 

1 2 3 4 5 6 7 8 9 10 

 Station Keflavik 

 Winter 

700 2.5 5.4 46 1.9 8.3 23 5.1 9.6 53 
500 3.5 5.6 62 3.0 11.3 26 6.9 13.0 53 
400 3.3 4.6 72 4.4 13.6 32 8.7 15.6 56 
300 3.2 3.5 91 4.4 14.7 30 8.9 16.9 53 

 Summer 

700 1.9 3.4 56 2.5 6.4 39 3.6 6.6 55 
500 2.5 3.8 66 3.1 9.1 34 3.7 9.1 40 
400 2.9 4.1 70 3.8 11.5 33 7.2 11.3 63 
300 3.1 3.8 82 4.0 14.6 27 6.8 14.0 48 

 Station Rome 
 Winter 

700 2.6 4.4 59 5.0 9.1 55 6.7 9.2 73 
500 3.0 4.5 66 6.0 11.5 52 8.8 13.4 66 
400 2.9 4.4 66 8.4 14.4 58 9.8 16.5 59 
300 3.0 3.3 91 11.1 17.9 62 13.8 19.4 71 

 Summer 

700 2.5 3.5 71 4.3 7.5 57 4.3 6.6 65 
500 2.1 3.3 64 5.7 8.4 67 6.0 8.7 69 
400 2.3 2.8 82 7.2 10.6 68 8.2 10.5 78 
300 2.5 2.6 96 9.0 13.2 69 10.6 13.6 78 

 Station Miami 
 Winter 

700 1.9 2.5 76 1.8 5.9 30 3.8 6.4 60 
500 1.5 2.4 62 2.2 7.8 28 4.9 7.2 68 
400 1.4 2.5 56 2.7 9.5 28 5.8 9.0 64 
300 1.4 2.2 64 4.0 11.7 34 6.5 11.0 59 

 Summer 

700 0.9 1.3 69 0.9 4.3 21 2.7 3.7 73 
500 1.0 1.3 77 1.2 4.9 24 2.2 3.7 59 
400 0.9 1.3 69 1.3 5.8 22 3.1 4.9 63 
300 1.0 1.6 62 1.3 7.4 18 4.3 5.9 73 
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At the first stage of solving the formulated problem, 
numerical experiments were conducted to estimate the 
dependence of efficiency of the MMCA on the choice of 
the meteorological parameter, on the number of the 
prescribed structures of the prognostic models, and on the 
order of matrices of input variables, which depends on the 
number of profiles used. 

Our numerical experiments demonstrated that: 
1. The modified method of clustering of arguments is 

an efficient technique for numerical estimate of the 
characteristics of the free atmosphere (in our case these 
are the air temperature and the zonal and meridional 
components of wind velocity) from the data obtained at 
lower levels including the ground and barometre altitude 
of 850 hPa, where reliable lidar data are available. This is 
clear from Table I, which lists, by way of example, the 
values of absolute (σ) and relative (δ/σ, %) retrieval 
errors for T, Vx , and Vy at different levels in the 

troposphere. These were retrieved from the data obtained 
at two levels: the ground and barometre altitude of 
850 hPa (∼ 1.5 km) at the stations Keflavik, Rome, and 
Miami only. 

2. With rare exception, this method yields the best 
results of retrieval of wind velocity components 
(particularly its zonal component Vx ). In almost every 

case, independent of station site, season, and level, the 
relative retrieval error for Vx remains within 18–60%, 

while the error of numerical estimate of Vy does not 

exceed 60–70% (see Table I). 
3. The most successful 12–hour forecast (retrieval) 

of the vertical profiles of tropospheric temperature and 
wind is given when ten structures are specified, which 
define the best structure of the prognostic model (in the 
sense of the retrieval quality), when a statistical sample 
numbering from 7 to 16 profiles is used. 

At the second stage of solving the formulated 
problem, we conducted numerical experiments aimed at 
additional assessment of the efficiency of the minimax 
approach to the statistical estimate of the characteristics 
of the free atmosphere. To this end, we used a procedure 
by which the temperatures and the zonal and meridional 
components of wind, retrieved by the algorithm of the 
MMCA, were compared to those retrieved by the method 
of multidimensional extrapolation (MMDE). The latter 
has found wide application to estimating the parameters 
of the free atmosphere from the data obtained at the 
levels below and above those being retrieved (see, e.g., 
Refs. 4, 9, and 10). By the MMDE, the vertical profiles 
of meteorological parameters were retrieved from the data 
obtained at lower levels using the expression of the form 
 

a
Ð

0
 = a– + ω′ (ai – a–i) , ω′ = S–1 s , (7) 

 

where a
Ð

0
 and a–

0
 are the retrieved and the average values 

of a given meteorological parameter at some retrieval 

level; ai and a
–

i are the vectors of the instantaneous and 

average values of the same parameter at lower levels; ω′ is 
the parameter of multiple regression, estimated with the 
help of the selected covariance matrix CSC and the 
selected k–dimensional vector of relation between the 
predictor and the predicant s. 

By way of example, Table II lists retrieval errors for 
the vertical profiles of temperature and the two 
components of wind velocity obtained by the MMCA and 
the MMDE algorithms from the data of station Rome in 
winters of 1970–1975. 

TABLE II. Root–mean–square deviations σ and standard 
retrieval errors δ of the temperature (T,°C) and the zonal 
(Vx 

, m/s) and meridional (Vy , 
m/s) components of wind 

velocity from the data obtained at the ground and barometre 
altitude of 850 hPa. 
 

Barometre 
altitude, T Vx Vy 

hPa δ
1

δ
2

σ δ
1
 δ

2
 σ δ

1
δ
2

σ 

700 2.6 3.0 4.4 5.0 8.0 9.1 6.7 7.3 9.2
500 3.0 5.7 4.5 6.0 8.9 11.5 8.8 9.8 13.4
400 2.9 6.3 4.4 8.4 9.2 14.4 9.8 9.9 16.5
300 3.0 3.6 3.3 11.1 12.4 17.9 15.3 15.8 19.4

 

Analyzing Table II, one sees that the values of 
standard errors δ calculated on the basis of these two 
methodological approaches, are quite comparable to each 
other. Moreover, usually independent of altitude (level) 
and the chosen meteorological parameter, the retrieval 
accuracy for the profiles of T, Vx , and Vy is much higher 

if the method of modified clustering of arguments is 
employed. This fact argues for the use of this method for 
statistical estimate of characteristics of the free 
atmosphere. 

Thus, based on the statistical estimates, we may conclude 
that the MMCA algorithm is acceptable for retrieving the 
characteristics of the free atmosphere from the data obtained 
at lower levels. This is also true if we consider the lidar data 
obtained at the ground and barometre altitude of 850 hPa. As 
compared to the method of multidimensional extrapolation, 
this method obviates the necessity of preliminary statistical 
generalization of a large array of the data of long–standing 
aerological observations, from which the parameters of 
multiple regression are otherwise to be calculated. It should be 
emphasized that the algorithm of the MMCA may yield even 
greater efficiency in case the input data are obtained with high 
spatial and temporal resolution, and an account is made of the 
synoptic situation during the experiment (in other words, 
when a teaching sample is formed). However, all such 
problems are outside the scope of the present paper and will 
be the subject of our further studies. 
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