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The effect of weak nonlinearity in the dispersion of a medium on the complex 
form of simple signals is considered. Under such conditions the effect of spatially 
periodic transformation of AM to PM and back from PM to AM, so–called 
transmodulation, is distinctly pronounced. Some possible practical applications of this 
phenomenon are demonstrated. 

 

Problems of the interaction of electromagnetic waves 
with the atmosphere are of permanent interest for 
investigators in the context of the prediction of propagation 
conditions for signals of various information–measuring 
systems1 (for purposes of communication, detection and 
ranging, range finding, and so on) and of solving a wide 
class of problems of determining the parameters of a 
propagation medium2 (for purposes of meteorology, ecology, 
geophysics, etc).  

It is assumed a priori in these researches that the 
frequency dispersion is linear within the signal spectral 
width Δω which is typically much less than the carrier 
frequency ω

0
, that is, Δω n ω

0
. 

However, this tentative assumption may violate under 
real conditions of measurements, for example, in remote 
sounding near selective absorption lines where the 
dispersion is not linear, or when broad band signals are used 
for which the dispersion is not linear over the bandwidth 
even if the spectrum of the signal is rather far from 
absorption lines. 

In this connection it makes sense to estimate the effect 
of nonlinearity in the dispersion of a medium on a signal. 
This is the objective of the present paper. 

To grasp the situation under above–indicated 
conditions, it will suffice to consider a quasimonochromatic 
plane wave train, that is, to represent a signal in the form 

 
E

0
(t) = A(t) exp(i ω

0
 t) , (1) 

 
where A(t) is a slowly varying function, to assume a non–
absorptive medium, and to expand the phase of the signal in 
a power series retaining the first three terms 
 
ϕ(ω) = ϕ(ω

0
) + ϕ'(ω

0
) Ω + (ϕ"(ω

0
) / 2) Ω 

2 ... , (2) 

 
where Ω = ω – ω

0
, and derivatives are taken with respect to ω. 

In the linear theory wave field is represented in the 
form of a Fourier integral at the point of radiation emission 
and the inverse transform is taken at the point of signal 
reception.3 The shape of signal transmitted through the 
medium assumes the form 

 

E(t) =
1

2 π
 ⌡⌠

 
 ⌡⌠

 
 

–∞
 

∞

A(τ) exp[i (ω
0
τ – ω τ + ω t – ϕ(ω))] d τ d ω. (3) 

 
It is evident that correct conclusion about the shape of 

the signal transmitted at a fixed distance through the medium 
can be made only if the functions A(t) and ϕ(ω) are known. 

In principle the problem can be completely solved 
for arbitrary form of the above–indicated functions by 
direct integration of expression (3) using modern 
computers to an accuracy being sufficient for practice. 
However, analytical solutions can be obtained only in 
relatively simple cases. 

One case is the wave whose amplitude is modulated 
by harmonic signal with the frequency Ω and the degree 
of modulation m. This case is of great practical 
importance. At the point of radiation emission the 
amplitude modulated (AM) wave can be described by the 
following expression: 

 
E

0
(t) = (1 + m cos Ω t) exp(i ω

0
 t) . (4) 

 
Substituting Eqs. (4) and (2) into Eq. (3) and 

omitting cumbersome intermediate manipulations, we finally 
derive for the field transmitted through the medium 
 

E(t) =[
 

 
1 + 2 m cos 

ϕ′′(ω
0
) Ω 

2

2  cos(Ω t – ϕ′(ω
0
) Ω) +  

 

]+ m2
 
cos2 (Ω t

 
– ϕ′(ω

0
) Ω)

0.5

 × 

 

×expi       

⎣
⎢
⎡

⎦
⎥
⎤

ω
0
t– ϕ(ω

0
)–arctan 

m sin 
ϕ′′(ω

0
)Ω2

2
 cos(Ωt–ϕ′(ω

0
)Ω)

1+m cos 
ϕ′′(ω

0
)Ω2

2  cos(Ωt–ϕ′(ω
0
)Ω)

. 
(5) 

A comparison of transmitted (4) and received (5) 
signals shows that even weakly nonlinear dispersion of 
the medium strongly affects the complex form of the 
signal. 

Because of limitations on the length of the article, 
we omit the details of the computer analysis of 
propagation of AM wave and point out only qualitative 
features that are illustrated by expression (5). 

It follows from equation (5) that both the amplitude 
and phase of the AM signal of the above–considered form 
involve the harmonic functions of time mutually displaced 
in phase by π/2. This means that at arbitrary point of 
reception of the AM wave one can simultaneously observe 
both amplitude and phase modulation. The modulation 
type transforms periodically in space from AM to PM and 
back, that is, the signal propagation is accompanied by 
transmodulation phenomenon, as pointed out in Ref. 4, 
but has not yet been investigated in detail. 
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If the condition ϕ"(ω) Ω 
2 g π is valid on the path 

from a transmitter to a receiver, this leads to the formation 
of blind zones during reception of the AM signal or to 
spectral distortion of the AM signal at the frequences at 
which this condition is valid. 

Treating the frequency as the derivative of the signal 
phase with respect to time, deviation of the carrier 
frequency of the received signal should be mentioned. It 
may result in the tuning instability in the receiving channel 
especially for systems with automatic phase tuning. 

In addition it follows from Eq. (5) that when 
operating through the real atmosphere the conditions 
ϕ′′(ω) Ω 

2 n π and m < 1 are most often realized. Under 
these conditions Eq. (5) can be reduced to 
 
E(t) = [1 + m cos(Ω t – ϕ'(ω

0
) Ω)] × 

 
× exp i [(ωt–ϕ(ω

0
)–m (ϕ"(ω

0
) Ω 

2
 / 2)cos(Ω t – ϕ'(ω

0
) Ω)]. (6) 

 
Differentiating the third term of the exponent with 

respect to time, we obtain the equation 
 

Δ ω = (m ϕ"(ω
0
) Ω3 / 2) sin(Ω t – ϕ'(ω

0
) Ω)] = 

 

= Δ ω
A
 sin(Ω t – ϕ'(ω

0
) Ω) , (7) 

 

where Δω
A
 is the measurable amplitude of deviation of the 

carrier frequency at the point of reception. This quantity 
enables one to reconstruct the parameters of the medium. 

For instance, we dwell on the use of Eq. (7) for 
calculation of the concentration of the component of 
homogeneous dispersive medium when operating near the 
absorption line of this component. 

Taking into account the well–known expression for 
the phase of the signal 

 

ϕ(ω) = (ω / c) n(ω) L , (8) 
 
where n is the refractive index of the medium, and L is the 
length of the signal propagation path, differentiating 
Eq. (8) two times, and substituting the obtained expression 
into Eq. (7), we derive for the carrier frequency deviation 
 

Δ ω
A
 = 

m Ω3 L d n
gr

2 c d ω
 , (9) 

 

where n
gr
 is the group refractive index of the medium. 

Assuming that the spectral line has the Lorentz shape with 
the central frequency ω

i 
, rate of decay g

i 
, and oscillator 

strength A
i
 and using successfully the Kramers–Kronig and 

Rayleigh relations, we obtain 
 

n
gr
(ω)

 
=N A

i 
ω

i 
ω

 
(ω 

i

2 + ω 
2) 

(ω 
i

2 – ω 
2)2 – g 

i

2 ω 
i

2 ω 
2

[(ω 
i

2 – ω 
2)2 + g 

i

2 ω 
i

2 ω 
2]2

 . (10) 

 
Transformation to new coordinates affixed to the line 

center Δ = ω – ω
i
 in Eq. (10) and subsequent differentiation 

yield for Eq. (9) 
 

Δ ω
A
 = 

m Ω3 L N A
i

2 c   
– 64 ω 

i

3 Δ3 + 80 g 
i

2 ω
i

10 Δ

(4 ω 
i

2 Δ2 + g 
i

2 ω
i

4 Δ)3  . (11) 

 
Solving Eq. (11) for N at maximum amplitude of 

deviation for Δ = 0.21 g
i 

ω
i
, we obtain the sought–after 

concentration 
 

N = 
Δω

A
 c g

i

3 ω
i

8.1 m Ω3 A
i 
L
 . 

 
Thus it has been shown in the paper that the 

propagation of amplitude–modulated wave through a 
medium with even weakly nonlinear dispersion is 
accompanied by significant changes of the complex signal 
form that must be taken into account when operating 
through this medium. Moreover, a possible application of 
these changes for determining some parameters of the 
propagation medium has been demonstrated as well. 
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