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In the context of the wave theory the axial intensity of a focused Gaussian beam 
has been calculated to the first order of the perturbation theory in the nonlinearity 
parameter for stationary and nonstationary regimes of thermal defocusing.  An 
approximation formula has been derived that allows the generalization of the obtained 
results to be made, including strong nonlinearity. 

 

1. INTRODUCTION 

 
Attempts to consider analytically the problem of 

thermal defocusing of a Gaussian beam of optical radiation 
in the context of the wave theory led to success in solving 
several particular problems.1–3  The present paper is 
devoted to analytical consideration of the most important 
practical problem on stationary regime of thermal 
defocusing of a focused Gaussian beam and derivation of a 
unified generalized expression describing thermal defocusing 
of a focused Gaussian beam for the case of long radiation 
pulse. 

To calculate a Gaussian beam intensity in a nonlinear 
medium, the technique proposed in Ref. 4 for solving the 
nonlinear parabolic equation was used.  This technique leads 
to the following general expression for the normalized 
intensity of a beam with arbitrary initial amplitude–phase 
distribution in the first order of the perturbation theory: 
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where W
lin

 is the solution of the parabolic equation for a 

wave beam propagating through the unperturbed medium 
with the refractive index n

0
 ,  I

lin
 is the intensity of this 

beam,  n
1
 = n – n

0
 is the refractive index deviation from its 

unperturbed value, k = 2πn
0
/λ is the wave vector in the 

unperturbed medium, r
0
 is the transverse radius of the 

beam, z is the coordinate along the beam propagation 
direction, and Re denotes the real part of the complex 
expression.  The dimensionless variables are used (primes 
are omitted below) 
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where α = 4πκ/λ is the radiation absorption coefficient in the 
medium, κ is the imaginary part of the refractive index of the 
medium, and A

0
 is the characteristic initial value (for z = 0) 

of the complex amplitude of the beam field.  The intensity 
of radiation I(x, y, z) is expressed in terms of the 
dimensionless function W(x, y, z) in the following way: 
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where P
0
 is the total beam power and the function W is 

normalized by the ratio 
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For a focused Gaussian beam the linear solution is 
given by the following expression: 
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The present paper deals with the long radiation pulse 

for which the condition t . r
0
/c

s
 F is satisfied.  Here t is 

the radiation pulse duration,  c
s
 is the sound speed in the 

medium,  and F = k r 
0

2/z
F
 is the Fresnel number.  The 

main mechanism of heat elimination from the region 
occupied by the beam is the removal of heated medium from 
the propagation channel  (with the velocity v

⊥
 along the x 

axis).  Therefore, nonstationary (when 

t n t
1
 ≈ r

0
/v

⊥
 1 + 3F 

2) and stationary (when t . t
1
) 

regimes of beam propagation are established. 
 
2. NONSTATIONARY REGIME OF THERMAL 

DEFOCUSING 

 
In the nonstationary regime variations in the refractive 

index of the medium are determined by the expression 
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where γ is the adiabatic exponent and p is the surrounding 

pressure.  For weakly absorbing medium (τ = α z n 1) the 
following expression for the normalized intensity on the 
beam axis is obtained with the use of Eq. (1): 
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where t
nl
 is the nonlinearity parameter (in the dimension 

units) 
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In the limiting cases of collimated (F = 0) and focused 
(z = 1/F) beams formula (2) gives the results presented in 
Refs. 2 and 3. 

For a focused Gaussian beam the radiation intensity in 
the center of the focal plane can be calculated ignoring the 
fact that the parameter τ = αz

F
 is small.  In this case we 

obtain 
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and Ei(x) is the integral exponent. 

The function Φ
nst

(F, τ) satisfies the condition Φ
nst ~

< 1 

in the ranges of the variables F and τ.  At the boundaries of 
the domain of definition the function takes the values 
Φ

nst
(F, τ) = 1 and Φ

nst
(F → ∞, τ) → exp (– τ). 

 
3. STATIONARY REGIME OF THERMAL 

DEFOCUSING 

 
In the stationary regime variations in the refractive 

index of the medium are determined by the expression 
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The normalized intensity of Gaussian beam in the 

stationary regime calculated on the basis of Eq. (1) for 
collimated beam is known 
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for z n 1, where N
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 and  

Φ(τ) = 2(τ – 1 + exp(– τ))/τ 2.  For focused beam in the 
focal point we derive 
 

I
n
(z

F
) = 1 – N

0
G

0
 = 1 – 

N
0
 π F 

2

3 1 + 3F 
2
 Φ

st
(F, τ) , (5) 

 
where 
 

Φ
st
(F, τ) = ⎝

⎛
⎠
⎞1 – 

6F

π(1 + 3 F 
2)

 ln
1 + 3 F 

2

e F exp( )– 
τ F

0.6 + F  

 

 

and e is the logarithmic base.  The relation for Φ
st
(F, t) was 

analytically derived at τ = 0 in the approximation allowing 
for the dominant terms of expansion in the parameter 

2F/(1 + 3F 
2) ≤ 1/ 3, while for τ > 0 – by way of fitting 

the calculated results by the relation exp[– τ F/(α + F)], 
where α is the adjustable parameter. 

 
4. GENERALIZED FORMULAS 

 
The formulas (3) and (5) can be written in the form of 

unified expressions combining the nonstationary and 

stationary regimes, which for short (t n t
1
) and long 

(t . t
1
) times are reduced to corresponding limiting cases.  

At the same time these formulas can be generalized to 
strong nonlinearity by way of substituting the expression 
exp(– N) for (1 – N).  Such generalization holds the 
validity of the results to the first order of the perturbation 
theory in the nonlinearity parameter and describes 
qualitatively realistically the behavior of defocusing beam 
for strong nonlinearity. 

The generalized expression for the normalized intensity 
in the focal plane of a defocusing Gaussian beam in the 
entire domain F ≥ 0, τ ≥ 0 has the form 

 

I
n
 = exp 

⎣
⎢
⎡

⎦
⎥
⎤

– N
0
G

0

⎝
⎜
⎛

⎠
⎟
⎞

1 + 
r
0

t v
⊥

1 + 3F 
2
 
π π F

st

3 ln3 F
nst

–1

 . 

 

For τ n 1, allowing for the term of the lowest order 
in the expansion of G

0
(F, 0) in the parameter 

2F/(1 + 3F 
2), the obtained formula simplifies and assumes 

the form 
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The obtained approximation expressions for the 

normalized intensity of a Gaussian focused beam in the case 
of long pulse (i.e., for pulse whose duration satisfies the 

condition t . r
0
/c

s
 F) describe the transition from the 

nonstationary regime of defocusing to the stationary one 
removing the fictitious singularity on v

⊥
 appearing in 

formulas (4) and (5). 
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