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In this paper, we present some results of mathematical modeling of the conditions 
for solving the inverse problem on determination of optical parameters of atmospheric 
layers from the data of measurements of hemispherical spectral flux of radiation at 
different levels in the atmosphere. The iteration process used in the paper for solving the 
inverse problem is shown to be convergent even for rather rough zero-order 
approximation. It is also shown that the proposed algorithm can be successfully used for 
processing of the data of real experiments. 

 
Statement of the inverse problem and technique for its 

solution have been considered in Refs. 1 and 2, as well as 
information content of solar radiation flux with respect to the 
optical parameters of atmospheric layers has been 
demonstrated. This paper is the continuation of the 
aforementioned papers, so we describe a specific calculation 
algorithm for solving the inverse problem without repetition of 
basic formulas and conclusions keeping designations that have 
been already used. As a development of the approach 
considered in the late 60s and early 70s,3,4 the inverse problem 
is suggested to be solved by combination of direct modeling 
and method of statistical regularization. The algorithm is 
checked in a closed numerical experiment. [Such an approach 
was studied earlier by Krekov (see, for example, Refs. 5 and 
6) and Naats]. 

In order to be certain that the selected algorithm is 
correct and the obtained solutions are adequate to the real 
parameters of the atmosphere, the numerical experiment has 
been carried out and its results are described in this paper. 

The essence of the numerical experiment is the following: 
some model of the atmosphere that further is referred to as 
"real" is assigned, then the direct problem is solved for it (i.e., 
upward and downward radiation flux is calculated), and the 
values of the flux are considered to be the results of 
experimental measurements; the inverse problem is solved for 
these "measurements." Comparison of the "real" model of the 
atmosphere and the results of solving the inverse problem 
makes it possible to conclude about the correctness of its 
solution. 

Let us briefly describe an algorithm for the 
numerical experiment including the technique for solving 
the inverse problem. 

1. The parameters of the problem are specified that 
are taken to be known exactly: the number of atmospheric 
layers (see Ref. 2), zenith angle of the Sun, surface 
albedo, and solar constant. 

2. The "real" model of the atmosphere is assigned by the 
vector X

R
 whose components are the optical thicknesses of the 

layers, single scattering albedos of the layers, and elongation 

of the scattering phase functions of the layers (for employed 
parametrization of the atmosphere, see Ref. 2). 

3. The direct problem is solved for the model X
R
, i.e., 

experimental measurements F = Ê( X
R
) are modeled, where K 

is the operator of solving the direct problem, and F are the 
"measured" radiation fluxes. The direct problem is solved by 
the Monte Carlo method (see below), so in addition to the 
measurement vector F, the vector of the variance of 
measurements Σ is obtained. Further we interpret it as a 
diagonal matrix of corresponding variances. The direct 
problem has been solved with an accuracy no less than 1.5% 
for each value of the flux. It corresponds to the experimental 
error, so we need not to add any "random" errors. 

4. Then we "forget" the "real" model of the atmosphere 
and consider the quantities F and Σ to be the results of some 
experimental measurements of unknown atmospheric 
parameters. In order for these parameters to be reconstructed, 
we solve the inverse problem by the method of statistical 
regularization.7 

5. The zero–order approximation is selected, that is, the 
vector X

0
 and the vector of a priori variances D that we 

further interpret as a diagonal matrix of corresponding 
variances. The a priori variances are selected from general 
physical considerations for the range of possible variation of 
the atmospheric layer parameters. 

6. The nonlinear inverse problem is solved by iteration 
technique.8 The iteration cycle is over i = 0, 1, ... . 

7. Then the flux and its derivative are calculated in the 
ith approximation: F

i
 = K(X

i
) , A

i
 = R(X

i
) , where R is the 

operator of calculating the derivatives, and A
i
 is the matrix of 

partial derivatives of the flux in each layer with respect to its 
parameters (technique for calculating the matrix A is described 
below). 

8. Fisher's matrix is calculated by the formula M
i
 =  

= (A+
i
 Σ

–1 A
i
 + D–1)–1 . The diagonal elements of the matrix 

M
i
 are the a posteriori variances for the model X

i
. 
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9. The "measured" flux F is compared with the 

calculated one 
∼
F

0
 in the zero–order approximation. If they 

agree (within the limits of the double root–mean–square 
error), the zero–order approximation is assumed to be 
correct. This approximation with the corresponding a 
posteriori variance is considered to be the solution of 
inverse problem. The criterion for termination of iterations 
is the difference between the ith and the preceding 
approximations X

i
 – X

i – 1
. In the numerical experiment, 

we terminated the iteration process in the interactive mode. 
Further in processing the real experiments the criteria for 
automatic termination of iterations will be selected. 

10. If iterations are continued, the next approximation 
is calculated by the formula 

X
i + 1

 
=
 
X

0
 + M

i
 A+

i
 Σ–1 (F – 

∼
F

i
 + A

i
 (X

i
 – X

0
)) , 

and calculations are repeated starting from item 7. 
11. After termination of iterations, the solution of the 

inverse problem is considered to be the vector X
i
 and 

variances of its components, i.e., the diagonal elements of 
the matrix M

i
. 

12. In order to check the correctness of the solution of 
the inverse problem, the "measured" and calculated flux F 

and 
∼
F

i
 are compared for real and retrieved models X

R
 and 

X
i
. Their good retrieval accuracy is indicated by their 

agreement within the limits of the double a posteriori root–
mean–square deviations (RMSD). 

Now let us dwell on the technique for solving the 
direct problem and calculating the partial derivatives of the 
flux. The Monte Carlo method was used in Ref. 2 for 
solving the transfer equation, and the technique of 
correlated trajectories of the Monte Carlo method was 
employed in calculating the derivatives. Its use in the first 
calculations was reasoned by the fact that the preliminary 
calculations were carried out. Their purpose was only to 
demonstrate that the amount of information was sufficient 
for the solution of the problem. However, the more optimal 
technique9 developed at the Computer Center of the 
Siberian Branch of the Russian Academy of Sciences was 
used for solving the inverse problem, capable of calculating 
the derivatives simultaneously with the flux. 

Unfortunately, although the calculation algorithm is 
simple, it is rather cumbersome (this is peculiar to all 
algorithms of the Monte Carlo method), so we do not 
present it here. Let us only briefly describe the basic 
principles of calculating the derivatives and the peculiarities 
of their calculation as applied to our problem.  

Derivatives are calculated simultaneously with 
modeling of flux, i.e., using the same photon trajectories. 
To calculate the derivatives, the special photon weights are 
introduced that are equal to the sum of the logarithmic 
derivatives of the probability of transition between the 
points of phase space and the photon local weight. It is 
clear that the corresponding formulas depend on a specific 
calculation technique (on the parameters to be modeled and 
algorithms for modeling). 

Let us use the algorithm for modeling the weighted 
functions with analytical averaging over the probabilities of 
photon absorption and leaving the medium as well as with 
local estimates of the flux,10 with the optical thickness 
being used as a vertical coordinate in the atmosphere, what 
significantly simplifies all calculations. The arrangement of 
specific expressions for the probability of photon transition 
between the points of the phase space and of the local 
estimates of the flux as well as of their differentiation with 
respect to the optical parameters of the atmospheric layers is 

not difficult. We omit the corresponding derivations because 
of limitations on the length of the article. 

We also note that the comparison between the 
"measured" and calculated values of the flux is used in the 
algorithm. Since "measurements" in our numerical 
experiment are at the same time calculations, the method of 
correlated trajectories10 is used for comparison between the 
values of the flux in order to exclude the effect of statistical 
error of the Monte Carlo method. Its essence is the 
following. The same photon trajectories are used for 
modeling of the "measured" and "calculated" values of the 
flux. Therefore, their difference is determined only by 
various atmospheric models. 

Nine numerical experiments on solving the inverse 
problem for different "real" models of the atmosphere were 
carried out by the given algorithm. Calculated results are 
given in Table I incorporating the "real" model of the 
atmosphere (optical thickness of the layers τ, single 
scattering albedo in the layer Λ, and elongation of the 
scattering phase function G), the zero–order approximation 
(identical for all experiments), and the results of solving 
the inverse problem (values of the retrieved optical 
parameters of the atmospheric layers and a posteriori 
variances of these parameters) for each experiment. Here n 
denotes the number of iterations. 

The following models were selected for the 
experiments: "thin" one–layer (the first experiment), "thin" 
five–layer homogeneous (the second experiment), "thin" 
five–layer inhomogeneous (the third experiment), "average" 
one–layer (the fourth experiment), "average" five–layer 
homogeneous (the fifth experiment), "average" five–layer 
inhomogeneous (the sixth experiment), "thick" one–layer 
(the seventh experiment), "thick" five–layer homogeneous 
(the eighth experiment), and "thick" five–layer 
inhomogeneous (the ninth experiment). The zenith angle of 
the Sun was taken to be 45° for all calculations, and the 
surface albedo was 30%. 

Calculations were carried out on an IBM –PC/286. 
Execution time varied from a few minutes to several hours 
depending on the complexity of the model (in particular, on 
the number of layers and their optical thickness τ). 

The principal results of the numerical experiment are 
the following. 

For "thin" models, the optical thickness is retrieved 
well, the single scattering albedo – worse, and the 
elongation of the scattering phase function practically 
cannot be retrieved. Especial attention should be paid to the 
results of the third experiment, where the inhomogeneity of 
the atmosphere was retrieved well in spite of the fact that 
the zero-–order approximation was homogeneous. 
Obviously, the good retrieval of the optical thickness for 
the "thin" atmosphere is explained by the fact that due to 
the small contribution of scattering, the amount of 
information on the optical thickness contained in the flux is 
greater than that on the single scattering albedo and 
scattering phase function. 

For "average" atmospheric models, the optical 
thickness and the single scattering albedo are retrieved well. 
Let us also pay attention to the results of the sixth 
experiment. The vertical profile of the optical thickness was 
not retrieved here from the homogeneous zero–order 
approximation (as for the "thin" model), but the vertical 
profile of the single scattering albedo was retrieved well. 
Therefore, due to scattering, the amount of information on 
the optical thickness contained in flux becomes less than 
that of information on the single scattering albedo. 

For the "thick" models, the dependence of the results 
of solving the inverse problem on the zero-–order 
approximation becomes pronounced. Actually, the 
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algorithms for statistical regularization give the solutions 
that are most similar to the zero–order approximation, so 

the unique solution, if it exists, depends on the zero-–order 
approximation. 
 

TABLE I. Results of the numerical experiments on solving the inverse problem. 
 

"Real" model Zero-–order appoximation Result of solving the inverse problem (the RMSD is given in 

parenthesis) 
1 2 3 

 The first experiment  
τ Λ G τ Λ G n τ Λ G 

0.2 0.9 13 0.6 0.85 10 12 0.19(0.02) 0.88(0.03) 8(6) 
The second experiment  

τ Λ G τ Λ G n τ Λ G 

0.04 
0.04 
0.04 
0.04 
0.04 

0.09 
0.09 
0.09 
0.09 
0.09 

13 
13 
13 
13 
13 

0.12 
0.12 
0.12 
0.12 
0.12 

0.85 
0.85 
0.85 
0.85 
0.85 

10 
10 
10 
10 
10 

11 0.036(0.005) 
0.040(0.007) 
0.040(0.008) 
0.040(0.009) 
0.040(0.009) 

0.87(0.06) 
0.88(0.06) 
0.88(0.06) 
0.87(0.06) 
0.88(0.05) 

11(7) 
9(6) 
8(7) 
10(7) 
10(7) 

 The third experiment  
τ Λ G τ Λ G n τ Λ G 

0.02 
0.03 
0.04 
0.05 
0.06 

0.75 
0.8 
0.85 
0.9 
0.95 

6 
9 
13 
17 
20 

0.12 
0.12 
0.12 
0.12 
0.12 

0.85 
0.85 
0.85 
0.85 
0.85 

10 
10 
10 
10 
10 

8 0.027(0.003) 
0.033(0.005) 
0.049(0.007) 
0.041(0.009) 
0.061(0.009) 

0.83(0.07) 
0.83(0.06) 
0.80(0.05) 
0.88(0.05) 
0.91(0.05) 

10(7) 
11(7) 
11(7) 
9(7) 
13(7) 

 The fourth experiment 
 

τ Λ G τ Λ G n τ Λ G 

0.5 0.9 14 0.6 0.85 10 8 0.43(0.04) 0.89(0.02) 8(7) 

 The fifth experiment  
τ Λ G τ Λ G n τ Λ G 

0.1 
0.1 
0.1 
0.1 
0.1 

0.9 
0.9 
0.9 
0.9 
0.9 

14 
14 
14 
14 
14 

0.12 
0.12 
0.12 
0.12 
0.12 

0.85 
0.85 
0.85 
0.85 
0.85 

10 
10 
10 
10 
10 

6 0.086(0.007) 
0.089(0.011) 
0.097(0.012) 
0.088(0.011) 
0.087(0.010) 

0.88(0.05) 
0.87(0.06) 
0.86(0.05) 
0.90(0.05) 
0.87(0.04) 

11(7) 
8(5) 
9(6) 
9(7) 
9(7) 

 The sixth experiment 
 

τ Λ G τ Λ G n τ Λ G 

0.07 
0.09 
0.11 
0.11 
0.12 

0.75 
0.8 
0.85 
0.9 
0.95 

5 
8 
13 
16 
20 

0.12 
0.12 
0.12 
0.12 
0.12 

0.85 
0.85 
0.85 
0.85 
0.85 

10 
10 
10 
10 
10 

7 0.105(0.007) 
0.099(0.009) 
0.095(0.01) 
0.109(0.01) 
0.090(0.01) 

0.81(0.05) 
0.83(0.05) 
0.84(0.05) 
0.88(0.04) 
0.93(0.04) 

12(7) 
12(6) 
11(6) 
10(7) 
9(7) 

 The seventh experiment  
τ Λ G τ Λ G n τ Λ G 

1.8 0.9 14 0.6 0.85 10 11 1.28(0.12) 0.86(0.02) 7(7) 
TABLE I (continued). 

 

1 2 3 
 The eighth experiment 

 
τ Λ G τ Λ G n τ Λ G 

0.36 
0.36 
0.36 
0.36 
0.36 

0.9 
0.9 
0.9 
0.9 
0.9 

14 
14 
14 
14 
14 

0.12 
0.12 
0.12 
0.12 
0.12 

0.85 
0.85 
0.85 
0.85 
0.85 

10 
10 
10 
10 
10 

8 0.18(0.03) 
0.23(0.03) 
0.26(0.02) 
0.25(0.02) 
0.24(0.02) 

0.86(0.06) 
0.87(0.05) 
0.80(0.04) 
0.84(0.04) 
0.86(0.02) 

3(2) 
5(5) 
9(6) 
9(6) 
9(7) 

 The ninth experiment  
τ Λ G τ Λ G n τ Λ G 

0.21 
0.27 
0.33 
0.33 
0.36 

0.75 
0.8 
0.85 
0.9 
0.95 

5 
8 
13 
16 
20 

0.12 
0.12 
0.12 
0.12 
0.12 

0.85 
0.85 
0.85 
0.85 
0.85 

10 
10 
10 
10 
10 

9 0.28(0.02) 
0.27(0.02) 
0.27(0.02) 
0.23(0.02) 
0.21(0.03) 

0.81(0.04) 
0.80(0.03) 
0.84(0.03) 
0.85(0.03) 
0.94(0.02) 

10(6) 
10(6) 
10(7) 
8(7) 
6(6) 

 
The results of the seventh to ninth experiments are 

really the solutions of the inverse problem, since the 
difference between the values of the flux calculated by the 
"initial" and "retrieved" models, is less than the double 
RMSD of each layer. 

We have specially selected the zero–order 
approximation to be essentially different from the initial 
model in order to investigate convergence of the iterations. 
The results of all nine experiments show that the iterations 
really converge, though the solution for "thick" models  
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differ from the "real" model. In this connection, for 
processing of the results of real but not "numerical" 
experiments, we recommend to select another zero-–order 
approximation, if the solution differs essentially from the 
employed zero-–order approximation. 

We note that the elongation of the scattering phase 
function G cannot be retrieved in our nine experiments (a 
posteriori variance was close to a priori one). Really, the 
calculations of the information content performed in Ref. 2 
show that the information on the scattering phase function 
may be obtained from measurements of the hemispheric flux 
only at rather large optical thicknesses and "favorable" 
combination of the other parameters. By the way, the 
eighth experiment indicates the feasibility of rough retrieval 
of the elongation of the scattering phase function for two 
first layers. 

Thus the results of numerical experiments allow us to 
make a promising conclusion about feasibility of retrieval of 
the vertical profiles of the atmospheric parameters from 
experimental hemispheric flux measured at different levels 
in the cloudless atmosphere. Such measurements were 
carried out over several years in the Laboratory of 
ShortWave Radiation of the Scientific–Research Institute of 
Physics at the Leningrad State University.11,12 

We note that in numerical experiments, in order to 
check the convergence of iterations, we specially selected 
some "average" zero–order approximation, which differed 
essentially from the "real" model, and large a priori 
variance. In processing of the results of real experiments, 
one can select the mean climatic model of the atmosphere 
for the region under investigation and corresponding a 
priori variance as a zero–order approximation. One also can 
use the estimates of separate parameters of the atmosphere 
obtained in a two–flux approximation11 as a zero-–order 
approximation. It should increase the accuracy of solving 
the inverse problem and decrease the number of iterations. 

 

The authors would like to acknowledge V.S. Kostsov 
for valuable remarks. 
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