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Feasibility of application of the optimal Markovian filtration to trifrequency 
laser sounding of the atmospheric temperature by the Mason technique for a stochastic 
model of temperature fluctuations smoothed by a laser sounding pulse has been 
demonstrated. An algorithm of Calman–Bucy filtration has been synthesized that 
allows one to obtain an optimal estimate of a fluctuating temperature profile and its 
variance simultaneously with the maximum likelihood estimates of the aerosol and 
molecular scattering coefficients as well as of the density of a sounded gas. 

 
1. INTRODUCTION 

 
The principle of laser sounding of temperature 

proposed by J.B. Mason1 allows one to determine the 
population of molecular rotational states and to retrieve 
the atmospheric temperature from the data on differential 
absorption. Practically, this technique has been realized 
in the following variants: bifrequency2 that imposes less 
stringent requirements upon emitting system and 
trifrequency3 that allows one to decrease the number of a 
priori assumptions and parameters. 

The spatially resolved trifrequency technique that 
involves sounding at the wavelengths λ1 and λ2 lying in 

the centers of the two absorption lines and at the 
wavelength λ0 selected close to λ1 and λ2 but different 

from any of them, is based on the comparison between the 
estimates of the same concentration of a gas sounded by 
the differential absorption (DA) technique. The formula 
for the temperature estimate was derived in Ref. 1 
disregarding absorption at λ0. This disadvantage resulting 

in the systematic error in estimating the temperature by 
the trifrequency Mason technique was eliminated in 
Ref. 4. However, no one paper took into account the 
stochastic structure of the spatial temperature profiles 
T(z) and the estimates obtained were not analyzed against 
the criterion of optimization. 

Efficiency of laser sounding of the temperature by 
any technique is limited by fluctuations of the measurable 
profile and shot fluctuations in signal and noise. To 
increase the efficiency of sounding, it is necessary to 
increase the energy potential of a lidar and to optimize 
the algorithm for received signal processing. Feasibility of 
application of the optimal Markovian filtration of the 
vertical temperature fluctuations smoothed by a lidar 
pulse to bifrequency sounding at the wavelengths λ1 and 

λ0 lying at the line centers and off the line of oxygen 

absorption was demonstrated in Ref. 5. 
The problem of synthesis of statistically optimal 

algorithms for processing of the DA lidar signals is 
further considered in this paper as applied to trifrequency 
sounding of the temperature. In particular, feasibility of 
application of the Calman–Bucy filter is shown and the 
efficiency of sounding is analyzed by the numerical 
modeling method for such processing of signals received 
mainly in the photon counting mode. 

 

2. PHYSICAL PREMISES 
 

Let us consider a ground–based monostatic lidar that 
emits the pulses with normalized power function f(z) at the 
wavelengths λ0, λ1, and λ2 lying at the centers λ1 and λ2 of 

the oxygen (O2) or water vapor (H2O) molecular absorption 

lines and off the absorption lines at λ0 and sounds the 

atmosphere within the altitude range [z0, zmax]. The power 

Ps i(z) of the signal component at the input of a detector 

received from the distance z at λ1 is determined by the lidar 

equation6 
 

Ps i(z)
 

= χ1 E0 Sa z 2 βi(z) 
c
2 Y a i

2 (0, z) Y R i
2 (0, z) Ji(z), (1) 

 
where it is assumed, according to Ref. 5, that smoothing 
over the running interval [z – L, z] essentially affects only 

the spatial realizations of the transmission function Y
∼

g i(0,z) 

at λi, caused by absorption6 of O2 or H2O, and the vertical 

profiles of the absorption characteristics and thermodynamic 
parameters of the atmosphere associated with them. In 
formula (1), χ1 is the total coefficient of losses in the 

receiving and transmitting optics, E0 is the energy of the 

emitted pulse, Sa is the effective area of the receiving 

aperture, βi(z) is the profile of the aerosol and molecular 

backscattering coefficient, Ya i and YR i are the transmission 

functions caused by aerosol and molecular scattering that 
during one sounding act are considered to be deterministic 
but unknown functions of altitude, c is the light velocity, 
τ = 2 z/c, L = cτp/2, τp is the effective duration of the 

emitted pulse, 
 

Ji(z)

 

= 
2
c ⌡
⌠

0

z

 

 dz′ f [ ]2(z – z′)
c  Y

∼
 g i
2 (0, z′) , (2) 

 

and z =
 
0, 1, 2. The tilde denotes natural profiles. 

 

The mass absorption coefficient of molecules at the 
frequency ν centered at νi has the form6: 



334   Atmos. Oceanic Opt.  /May  1994/  Vol. 7,  No. 5 G.M. Igonin  
 
 

 

K
∼

g(z; v – vi) = S
∼

g(z; λi) f
∼
g(z; λ – λi) , (3) 

where S
∼

g(z; λi) is the intensity of the absorption line at the 

wavelength λi = c/νi, depending on T
∼
(z); fg(z; ν – νi) is 

the Voigt profile that describes the absorption line shape in 
the general case with allowance for collisional and Doppler 
broadening. 

Following Ref. 5, let us represent the random 

quantities in the form T
∼
(z) = T

–
(z) + ΔT

∼
(z), where T

–
(z) is 

the a priori mean profile of T
∼
(z) with sufficient statistics 

averaged over an ensemble of temperature fluctuations. 

For arbitrary profiles T
∼
(z) and P

∼
(z) (temperature and 

pressure, respectively), S
∼

g(z, λi) and fg(z; ν – νi ) have the 

form6  

S
∼

g(z; λi) = Sg(T
–

(z);λi)

⎩
⎨
⎧

 

 T
–

(z)

T
∼
(z) ⎭

⎬
⎫

 

 3/2

exp

⎩
⎨
⎧

⎭
⎬
⎫– 

hc
k  Ei

′′ 

⎝
⎛

⎠
⎞1

T
∼
(z)

–
1

T
–

(z)
, 

(4) 

where Sg(T
–

(z); λi) is the line intensity at the temperature 

T
–

(z); h and k are the Planck and Boltzmann constants, 

respectively; E′′
i  is the energy of the lower level of the 

transition to λi; 

f
∼
g(z; ν – νi) = 

f
∼
′ a∼

π
 ⌡
⌠

–∞

∞

 

 
dy 

exp(– y2)

a∼2 + (μ∼ – y)2
 , (5) 

where f
∼
′ = 

ln (2/π)

γ
∼

D

, a∼ = ln 2 
γ
∼

L

γ
∼
D

, and μ∼ = ln 2 

(ν – νi)

γ
∼

D

, 

γ
∼

L(λi) = γL(λi; T
∼
(z), P

∼
(z)) = γL(λi; T

–
(z)) 

�( )

( )

m

T z

T z

⎡ ⎤
⎢ ⎥
⎣ ⎦

 P
∼
(z)

P
–

(z)
, (6) 

γ
∼
D(λi) = γD(λi; T

∼
(z)) = γD(λi; T

∼
(z)) = γD(λi; T

–
(z)

) T
∼
(z)/T

–
(z)  

 (7) 
are the Lorentz and Doppler half–widths of the absorption 

lines at T
∼
(z), P

∼
(z); γL(λi, T

–
(z), P

–
(z)), γD(λi, T

–
(z)) are the 

same half–widths but for T
–

(z), P
–

(z), m = 1/2 in the 
Doppler pressure–broadening regime and depends on the 
transition in this regime and thus in general case. 

Since the condition σ[T
∼
(z)] n T

–
(z) is satisfied in the 

atmosphere for the root–mean–square deviation σ[T
∼
(z)] of the 

temperature, we can linearize the mass coefficient K
∼

g(z; λi) at 

the center of the absorption line at T
∼
(z) and P

∼
(z) for ΔT

∼
(z) in 

the form  

K
∼

g(z; λi) = K
–

g(z; λi) + 
dK
∼

g(z; λi)

dT
∼

T
∼
 = T

–
 ΔT

∼
(z) , (8) 

where  

K
–

g(z; λi) = Kg(z; λi, T
–

(z), P
–

(z)) , 
 

dK
∼

g(z; λi)

dT
∼
(z)

 = [ ]h c
k  E i

′′ – 
3
2 – Gi(z)  

K
–

g(z; λi)

T
∼
(z)

 , (9) 

 

Gi(z) = 1 + 2 a∼i
2 – a∼i exp(– a∼i

2) / ⌡⌠
a∼i

∞

 
 exp(– y2) dy (10) 

 

describes the line shape depending on the altitude, affected 

by collisional (a∼i = ∞, G(z) = 0) and Doppler (a∼i = 0, 

G(z) = 1) broadening. 

Let us expand Y
∼

g i
2  in the Taylor series around the 

profile ΔT
∼
(z) in the vicinity of the smoothed altitude 

realization 
 

Δ T(z) = 
2
c ⌡⌠

0

z

 
 f [2 (z – z′) / c] ΔT

∼
(z′) dz′ . (11) 

In the linear approximation we can write for the functional 
 

Y
∼

 g i
2 (0, z) g Y

–
 g i
2 (0, z)

⎩
⎨
⎧ 

 
e
– z Δ si+⌡⌠

0

z

 
 dz′e

– z Δ si } 
(Δ γ

~
i–Δ γi) ,(12) 

 

where Δγi(z) = ρ(z) K
–

g(z; λi) Bi(z) 
Δ T(z)

T
–

(z)
 and 

Δτi(0, z) =⌡⌠
0

z

 
 dz′ Δγi(z) are the smoothed fluctuations of the 

absorption coefficient and optical depth due to absorption, 

respectively; Δg∼i and Δτ
∼ are the same at ΔT

∼
(z); 

Bi(z) = 
h c
k  E i

′′ – 
3
2 – Gi(z). 

After integration of Eq.(2), taking into account that 

Δγ∼i is close to Δγi for the functional Ji(z), we obtain  
 

Ji(z)gY
–

 g i
2 (0, z)exp

⎩
⎨
⎧ 

 
– 2 ⌡⌠

0

z

 
 dz′ ρ(z′) K

–
g(z′; λi) Bi(z′) 

ΔT(z′)

T
–
(z′) ⎭

⎬
⎫ 

 
, 

(13) 

where Y
–

 g i
2 (0, z) is the transmission function due to 

absorption by O2 and H2O at T
–

(z) and P
–

(z). 

 
3. MODEL OF SIGNAL AND NOISE 

 

Let L . z∼kT, where z∼kT is the vertical correlation 

length of the unsmoothed fluctuations ΔT
~
(z). Then, 

following Ref. 5, let us take the approximation of the 
normalized fluctuations η1(τ) = ΔT(cτ/2)/σT(z) in the 

form of a Gaussian Markovian process. Full statistical 
description of the temperature fluctuations and absorption 
characteristics connected with them gives a four–
dimensional vector–process η = { ηj }

T, where 

j = 1, 2, 3, 4, whose components satisfy the system of 
stochastic differential equations (SDE) of the form 
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η
⋅
1 = – α η1 + w1(t) ,

η
⋅
2+i = c ρg(z) σ

–
ki η1(τ) ,

 (14) 

 

where w1(τ) is the white Gaussian noise: <w1(τ)> = 0, 

<w1(τ) w1(τ′)> = 2αδ(τ – τ′), α = 1/τp, and 
 

σ
–

 k i
2  = K

–
g(z; λi) Bi

2(z) σ2
T / T

–
 2(z) (15) 

 

is the variance of the mass absorption coefficient Kg(z; λi) 

of the sounded gas. 
Then in the main photon counting regimes we have for 

the given realizations η(τ) at the output of optical detection 
channels at the wavelengths i = 0, 1, 2 : 
 

y(τ) = s(τ; V, η) + n(τ) , (16) 
 

where, according to Eqs. (1) and (13), 
 

s(τ; η, V) = s–(τ; V) ξ(τ; η) 
 

is the vector of the ensemble averaged shot fluctuations of 
the signal components si(τ, V, η) of the photoelectric 

current in the form of digital values or the number of 
photoelectrons accumulated in the gate interval Δτc n τp, 

V = {u, ρ} = {ui, ρ} , ui = {βi, Y
–

i} , ξ(τ; η) = {ξi(τ; η)} 
 

is the three–dimensional vector, whose components, 
according to Eq. (13), are  
 

ξi(τ; η) = exp{– 2 η2i} , (17) 
 

where η2i = Δτg i(0, z) are the optical depth fluctuations 

caused by absorption of the sounded gas at λi , 
 

Y
–

i = exp
⎩
⎨
⎧ 

 
– ⌡⌠

0

z

 
 dz'

⎭
⎬
⎫ 

 
si(z')  ,  βi = g

π
 σi . (18) 

 

Using the Bunyakowskii–Schwarz inequality and 
linerizing Eq.(17) for Δτg i(0,z), one can show that5 

Δτg i
2 (0, z)  n 1 and the approximation holds  

 

ξi(τ; η) = 1 – 2 η2+i . (19) 
 

In the current regime of operation under condition 
Πi τp . 1, where Πi is the bandwidth of postdetector filter 

of the first channel, n(τ) = {ni(τ)}, and ni(τ) is the white 

Gaussian noise with spectral power density 
 

N0i = 2 e [ s–i(τ) + χqe Pbg i + s–di] , (20) 
 

where Pbg i and sdi are the background power at the input 

and the dark current of the ith photodetector channel, 
respectively; χqe is the quantum efficiency of the 

photodetector. 
 

4. FILTRATION EQUATION 
  
Let us process the data sample given by Eq. (16): 

y(τ) = {yi/τ}
T, to provide the optimal estimate of the 

realization η(τ) in the sense of maximum a posteriori 
probability density (APD). In accordance with the 

aforementioned considerations of the component V, it is 
necessary to estimate the unknown profiles of ui and ρ 

simultaneously. Following Ref. 7, let us resolve the a priori 
uncertainly about ui and ρ with the help of the variant of 

maximum likelihood (ML). 
Since the sounding wavelengths are close, we may 

ignore the spectral dependence of the aerosol and molecular 
scattering coefficients. Thus, the components of ui at all 

wavelengths are equal, so it would suffice to obtain the ML 
estimate of the scattering coefficient σ0(z) at λ0. The other 

characteristics of aerosol and molecular scattering we may 
obtain using Eq. (18) and the data of measurements of the 
meteorological parameters. 

According to Ref. 8, the ML estimate u
Ð

0 of the 

components of unknown vector u0 with additive Gaussian 

noise is determined from the relation 
 

y0(τ) = s0(τ; η*, u
Ð

0, r
Ð

g) , (21) 
 

where the ML estimate r
Ð

g(z) of the density ρg(z) is obtained 

using the data sample at λ2 
 

y2(τ) = s2(τ; η*, u
Ð

0, r
Ð

g) . (22) 
 

Since the pairs λ0, λ1 and λ1, λ2 are close, the estimates u
Ð

0 

and r
Ð

g obtained at λ0 and λ2 can be used for data processing 

at λ1. 

As a result, the statement of the problem of synthesis 
of the statistically optimal algorithm for signal processing at 
λ1 to obtain the estimate η* state vector η is described by 

the expression 
 

y1(τ) = s–1(τ; u
Ð

0) exp
⎩
⎨
⎧ 

 
– 2 ⌡⌠

0

z

 
 dz′ ρ

Ð

(z′) × 

× [K
–

g(z′; λ1) B1(z′) – K
–

g(z′; λ0) B0(z′)]
⎭
⎬
⎫ 

 
η1  + η1(τ), (23) 

  
where y1(σ) are the data sample u

Ð

0 and r
Ð

g are the running 

ML estimates of u0 and ρg that are obtained simultaneously 

with η* when Eq. (23) is completed by Eqs. (21) and (22). 
The a priori information on the statistical structure of the 
state vector η components is embedded in the system of 
differential equations (15). It is necessary to find the 
algorithm for optimal processing of the received signals in 
the since of the maximum APD at λ1 corresponding to the 

transition with the energy of the lower level E′′
1 . E′′

0 and 

E′′
1 . E′′

2. 

Let us write down the system of equations of the 
quasioptimal Calmam–Bucy filtration5 using the Gaussian 
approximation of the APD of the state vector η with the 
conditional mean η* and correlation matrix R = < (η – η*)× 
× (η – η*)T> 

η
⋅ * = A(z) η* + 

2
N01

 R C [y1(τ) – s
–

Ð

1(τ) u
Ð

0 ξ1(τ; η*)] , (24) 

R
⋅
 = A R + R AT + b – 

s
–

Ð

1
2(τ)

N01
 R F2 R , (25) 

where  
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A = 
⎝
⎛

⎠
⎞– α 0

c ρ
Ð

g(σ
–

C1 – σ
–

C0) / 2 0
 , 

 

F2 is the matrix of order (2×2) with nonzero component 

F22 = – 4. 

The optimal processing is the simultaneous solution of 
the system of Eqs. (24) and (25), as the sample data on 
y1(τ) become available, with Eqs. (21) and (22) for the a 

priori profiles T
–

(z), σT(z), and L with preset initial 

conditions, by the appropriate finite–difference technique 
on a computer. 

The recurrent finite–difference solution of this system 
of equations gives the optimal estimate η1* and thereby the 

estimate of the temperature profile T(z) 
 

T*(z) = T
–

(z) + σT(z) h1*(c τ / 2) , 
 

as well as the estimate R11(τ) of the variance of realization η1*

(τ) and thereby of the variance D[T*(z)] = σT
2(z)R11(τ) of the 

profile T*(z). 
 

5. FILTRATION EFFICIENCY  
 

Let us characterize the efficiency of filtration by the 
dependence of the variance of the temperature estimate on 
the sounding altitude in different spectral ranges in the 
absorption lines of O2 and H2O. 

According to Eq. (25), the elements of the correlation 
matrix satisfy the following system of differential equations 
 

⎩⎪
⎨
⎪⎧

 

R
⋅

11=–2 α R11+2 α–4 
s
–
Ð

1
2(τ)

N01
R12

2 (τ) ,

R
⋅

12=–2αR12+c ρ

Ð

g(σ
–
C1–σ

–
C0)/2R11–4

s
–
Ð

1
2(τ)

N01
R12R22,

R
⋅

22=cρ

Ð

g(σ
–
C1– σ

–
C0)/2R12–4

s
–
Ð

1
2(τ)

N01
R22

2 (τ) ,

 (26) 
 

where the independent variable τ = 2z/c is related to the 
altitude z, so the profiles of the relative variance R11(2z/c) 

and R22(2z/c) characterize the filtration efficiency and its 

dynamics as function of altitude. 
For comprehensive study of the dependencies R11(z), 

R12(z), and R22(z) it is necessary to model the profiles  

s1(z), ρg(z), σC(z; λi), etc. considering all the factors that 

affect sounding of temperature by the Mason technique and 
to integrate Eq. (26). 

We can analyze the dependence of R11(z) on the 

altitude if we replace R12(z) in the first equation of system 

(26) by its approximation  

R12(z)
 
g ρ

Ð

g(σ
–

C1 – σ
–

C0) zL R11(z) , 

where  
 

zL = 
⎩
⎨
⎧

 

z – z0 , for z – z0 n L ,

L , for z – z0 . L .  (27) 

 

In this case the equation for R11(z) can be integrated 

independently of the system of equations (26). In particular, 
we have 

 

dR
⋅
11(z)

dz  = – 
2
L R11(z) + 

2
L – 

2
L Q(z; λ1) R11

2 (z) , (28) 

where 

Q(z; λ1) = 
s–̂1

2 ρ̂g
2 (σ–C1 – σ–C0) zL

2

N01 α
 . (29) 

 
In analogy with Refs. 5 and 7, in which one–and 

two–channel filtration of signals of lidars harnessing 
scattering and DA was considered, let us call the parameter 
Q(z; λ1) the generalized signal–to–noise ratio. It is seen 

that Q(z; λ1) of the form given by Eq. (29) differs from the 

ratio Q(z; λ1) introduced in Refs. 5 and 7 by a larger 

number of parameters specifying Q(z; λ1). Taking into 

account that  
 

σ
–

Ci = K
–

g(z; λi) Bi(E i
′′, Gi(z)) μT(z) ,  

 

where μT =
 
σT / T

–
 , s–

Ð

1(l0), ρ
Ð

g(λ2; σ
–

C2 – σ–C0) we obtain 

that Q is determined by the following parameters: the 

signal–to–noise ratio s–1
2/N01 α due to elastic scattering, 

the variation coefficient μT, and the nonlinear dependence 

of the quantities ρg(z),  

K
–

g(z, λ1) B1(E1
", G1) – K

–
g(z, λ0) B0(E0

′′, G0), 

K
–

g(z; λ2) B2(E2
′′, G2) – K

–
g(z, λ0) B0(E0

′′, G0) ,  

and zL determining the value of variance D [ Δ τ10
2 ]

 = (σ–C1 – σ–C0)
2 ρg

2 zL
2 of the differential optical depth 

Δτ10(0, zL). 

Filtration is efficient only at altitudes at which 
Q(z; λ1) . 1 (see Ref. 8). Let us determine the corresponding 

value of R11(z) taking dR11(z)/dz = 0 in Eq. (28). Then the 

solution R
–

11(z) of the quadratic equation has the form 

 

R
–

11(z) = 
1

2 Q(z; λ1)
 { }1 + 4 Q(z; λ1)

 
–

 
1  . (30) 

 
Using the derived quantities Q(z; λ1), we can determine 

from the Eq. (30) the profiles R
–

11(z) and the errors s–

(T *) = σT R
–

11(z) in retrieving T *(z). It is seen that 

optimization of the data processing with the use of the 
Calman–Bucy filtration algorithm provides the efficient 
retrieval of the fluctuating temperature profiles, since it allows 
us to obtain the error in retrieving σ[T *(z)] < σ[T(z)]. 

 

6. CONCLUSION 
 

The Calman–Bucy filtration algorithm has been 
synthesized that makes it possible to optimize the 
processing of the DA lidar signals in trifrequency 
sounding of the temperature by the Mason technique.  
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Simultaneously it is possible to determine the ML 
estimates of the aerosol and molecular scattering 
coefficients and the density of the sounded gas. It is 
shown that the efficiency of filtration of the spatial 
realizations of temperature depends on the generalized 
signal–to–noise ratio (introduced in the paper) that 
accumulates all the factors that show promise for this 
technique. 
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