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In this paper we analyze a possibility of using Kalman linear adaptive filter in the problem on 
estimating coordinates of a pulsed source of optical radiation observed through the atmosphere. 
 

The differential technique of ranging by retrieving 
coordinates of the end user of information from the 
NAVSTAR satellite network is well–known in 
radionavigation. It is based on detecting modulated 
signals from several space vehicles (SV).1 If an optimal 
"constellation" of SVs is chosen, coordinates of the 
detector are calculated from time lags between signals 
arriving at the detectors and from the SVs coordinates. A 
slightly modified version of the same technique is used for 
estimating coordinates of a pulsed isotropic point source 
of optical radiation from observations available from 
several SVs.2 According to this technique various SVs 
record different copies of one and the same signal, which 
has a complex, usually unknown profile. These copies are 
essentially altered in their scale and shifted in time. The 
initial data for calculating the coordinates of such a 
source are the time lags between such copies arrival at a 
SVs. 

Determination of the time lags in the form of arrival 
times difference can be done accurate to the timing 
accuracy of SV recorders of the signal that depends on 
SNR (signal–to–noise ratio). A more reliable method of 
measuring time lags could be based on estimation of the 
time lad between copies as a whole, at which their 
matching becomes optimal in the sense of rms difference. 

This task can be solved by a linear adaptive filter, 
capable of identifying unknown system connected to it in 
parallel.3 The identification is implied of a linear system 
capable of transforming one of the compared copies of a 
signal into the other. Provided the profiles of the two 
copies coincide completely, the pulse response h(t) of 
such a system would be the Dirac delta function 
h(t) = δ(t – Δt), where Δt is the time lag between the 
two copies. In practice the function h(t) will naturally 
differ from δ(t – Δt), but one may expect that, for copies 
just slightly perturbed and scale normalized, the position 
of the average point (i.e., the first moment) and the 
maximum of h(t) function are close to Δt. The same 
should hold for an adaptive digital filter with the pulse 
response hi(n) which approximates the system to be 

identified. 
If the filter operates in a stationary mode (n . N), 

one may use its characteristic, that is, the position of its 
average point or maximum response hi(n) as a function of 

i, to estimate the sought time lags Δt between the 
compared copies of a signal. One may assume that the 
accuracy of such an estimation will worsen with Δt 
growth. Therefore, it is advisable, prior to comparing two 
copies, to bias one of them by an expected (nominal) lag 
Δt

0
, thus reducing the problem to estimating the minor 

difference Δt – Δt
0
. Below we understand by Δt just this 

difference between the actual and nominal values of a 
time lag. 

In this study we just check up the above statements in 
a numerical experiment with a digital adaptive filter which 
has a finite pulse response h

i(n), i = 1, ..., N. 
 

 
 

Fig. 1. 
 

Figure 1 presents the operation of such a filter 
schematically. The transformation that an adaptive filter 
performs is described by a convolution equation, common to 
all the linear filters 

 

y
Ð

(n) = ∑
i=0

N–1

 
 hi(n) x(n – i) = HN

T(n) XN(n) = XN
T(n) HN(n) , (1) 

 

where x(n) and y
Ð

(n) are random signals, fed to the input 
and generated at the output of the filter, respectively; 
H

N(n) is the pulse transient characteristic of the filter at 

time n, presented by the column–vector of length N 
 
H

N(n) = [h
0
(n) , ..., hN–1

(n)]T ; (2) 

 
X

N(n) is a portion of input signal which includes the values 

x for instants n, n – 1, ..., n – N + 1, presented by the 
column–vector of length N 
 

XN(n) = [x(n), ..., x(n – N + 1)]T ; (3) 
 

subscript T denotes the symbol of matrix transposition. All 
elements of the vector XN(n), for which n – i < 1 

(i = 0, 1, ..., N – 1), are equal to zero. A peculiar feature 
of an adaptive filter is that its characteristic HN(n) 

continuously changes for higher n, to make the output 

signal y
Ð

(n) closer to the desired (reference) signal y(n). In 
the ideal case the filter characteristic H

N(n) should be 

controlled by the statistical condition of minimum 
discrepancy 
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ε(n) = E[⏐y(n) – y
Ð

(n)⏐2] , (4) 
 

where E[•] is the operator of mathematical expectation of 
the random variable in brackets. In practice, however, a 
simpler condition is usually sufficient 
 

∑
i=1

n

 
 λ

n–i e2(i / n) = min , (5) 

 

where 
 

e(i / n) = y(i) – XN
T(n) HN(n) (6) 

 

is the error in ith value of the sought signal y(i) predicted by 
filter H

N(n), calculated for the time moment n, and λ is a 

weighting coefficient close to unit. Changes of HN(n) at 

higher n, which it suffers while adapting to the task of 

matching y
Ð

(n) to y(n), are described by the recursive equation 
 

H
N(n) = HN(n – 1) + gN(n) [y(n) – XN

T(n) HN(n – 1)] , (7) 

 
where gN(n) is the vector of gain factors. In general, the 

task of designing an adaptive filter is reduced to calculation 
of these factors for every n. Just the latter equation, 
together with a procedure of g

N(n) renewal when one 

proceeds from (n – 1) to n, is what is called an adaptive 
filter. The filter functioning starts according to this 
equation at the time moment n = 1 and continues till the 
final value n = p ≥ N, beyond which the value ε(n) remains 
practically unchanged. 

It is a recursive adaptive filter designed after the 
least–t square technique. Its operation may be presented by 
the following scheme. At n = 0 the initial conditions are: 
 
H

NN(0) = XNN(0) = 0 , (8) 
 

CNN(0) = δ INN ,  (δ . 1) . (9) 

 
The input data, starting from n = 1 to the final value p are 
y(n) and XN(n). The current (running) nth computational 

cycle includes: 
 
e(n / n – 1)=y(n) – XN

T(n) HN(n – 1) – the forecast error, (10) 
 

μ(n) = XN
T(n) CNN(n – 1) XN(n) , (11) 

 

gN(n) = 
C

NN(n – 1) XN(n)

l + m(n)  – gain vector , (12) 

 

HN(n) =HN(n – 1) + gN(n) e(n / n–1) – renewed estimate,  (13) 
 

CNN(n) = (1/λ) [CNN(n – 1) – gN(n) XN
T(n) CNN(n – 1)]. (14) 

 
During the final pth cycle N values h

0
(p), h

1
(p), ...,  

h
N–1

(p), which form the column–vector HN(p), appear at 

the filter output. We introduce the initial condition 
CNN(0) = δINN (δ . 1), where INN is the unit N × N 

matrix, to provide for the existence of the inverse matrix 

C
NN

–1
 during the first n ≤ N computations, since the matrix 

C
NN(n) could be singular otherwise. 

This algorithm should only be considered as basic one. 
Its purpose is to clarify the principle of operation of an 

adaptive filter in the mode of identification of a linear 
system. The cycle of such an algorithm needs O(N2) 
arithmetic operations. Their number may, however, be 
reduced to O(N), if other more efficient procedures are 
used,4,5 which are based on a scheme of quick Kalman 
filtration. Appendix to this paper contains a PASCAL 
program to compute such an adaptive filter. In addition to 
computing H

N(p) the program also enables one to estimate 

the time lag between the copies Δt according to formula 
 

Δ t = ∑
i=0

N–1

 
 i hi(p) ,  p ≥ N = 20–40 . (15) 

 
Convergence of the algorithm implementing this 

program is illustrated by Fig. 2 which shows coefficients 
hi(n) vs i for a signal–to–noise ratio of 30 at various n 

(N = 20). The values of λ and δ were assumed to be 0.9 and 
5, respectively. Figure 3 demonstrates the parameters of 
such an adaptive filter for the case of two signals of 
identical shape and no noise. 

As seen from Fig. 3, the index of the maximum 
component of such an adaptive filter corresponds to a time lag 
Δt = 4τ between the two signals, where τ is the time step. 
 

 
 

Fig.2. Parameters of the adaptive filter for two signals of 
identical shape in the case of "white" noise, i = 0, 4, 10, and 18. 

 

 
 

Fig.3. Parameters of the adaptive filter for two signals of 
identical shape. 

 

Thus, one can find Δt from the maximum component 
of the adaptive filter accurate to τ value. Expression (15) 
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then yields the same time lag between the two signals at a 
much higher accuracy. At the same time, when there is a 
noise in the signal, the value of p should not exceed the 
characteristic signal length too much. Otherwise the 
adaptive filter would start tuning to noise, instead of a 
signal. As demonstrated by computations for the case of two 
identical signals without noise the components of an 
adaptive filter remain practically independent of signal 
profile. Five to ten time steps after the start of the second 
pulse, the components of vector H

N(n) stop changing, while 

all the components with indices exceeding Δt by about 10 
vanish. The index of the maximum component of the vector 
H

N(n) corresponds to the time moment shorter than Δt by 

less than τ/2. 
Assuming a Gaussian noise to perturb both the first 

and the second signal (the noises reaching the first and the 
second detector are thus mutually independent), and also 
accounting for inhomogeneous screening of signals which 
reach the first and the second SV detectors by the partially 
cloudy atmosphere, one might expect that the H

N(n) vector 

will noticeably be distorted. The components of vector 
H

N(n) will then not turn to zero at high indices. As a 

result, expression (15) will not yield a satisfactory accuracy. 
To determine Δt in this case one may use the time moment 
corresponding to the maximum (principal maximum) 
component of the HN(n) vector. Then the accuracy of Δt 

retrieval will be equal to the time step τ. To reduce the 
effect of noise on the accuracy of retrieval of Δt, one may 
compare the signals after smoothing them. We choose an 
integrator (signal smoother) in the form of an RC–curcuit, 
described by the equation 

 

V(t) = 
1
tI

 ⌡⌠
0

t

 
 X(τ) exp

⎝
⎛

⎠
⎞– 

t – τ
tI

 dτ , (16) 

 

where X(τ) is the initial, and V(t) is the smoothed signal. 
Using formulas for numerical integration with the 
integration step τ, we obtain an expression for V(t) 

 

V(t)=X(t)–tI e
– t/tI ∑

j=1

i

 
 Dj (e

– tj/tI – e
– tj–1

/tI) , (17) 

 

Dj = 
X(t

j) – X(tj–1
)

t
j – tj–1

 . (18) 

 
Signal smoothing significantly increases the signal–

to–noise ratio. In this case the components of vector HN(n) 

still do not turn to zero at high indices, and formula (15) 
does not yield any qualitatively different results on the time 
lag between the two signals. At the same time, integration 
for large t

I makes the principal maximum of HN(n) more 

pronounced, so that one may then determine the time lag 
between the two signals using the principal maximum of 
H

N(n) at lower signal–to–noise ratios. 

Computations show that the parameters of the Kalman 
adaptive filter, which transforms the first of the two signals 
into a signal only slightly different from the second, may be 
used to calculate the time lag between the moments the 
signals arrive at detectors. Even with some noise and if the 
broadening of signals is different (from SV to SV) due to 
partial cloudiness in the atmosphere, the error of time lag 
Δt determination from the parameters of the filter H

N(n) 

does not exceed the time step τ.  

APPENDIX: DISCRETE ADAPTIVE KALMAN FILTER 
H

N
(n) AND THE TIME LAG BETWEEN THE 

SIGNALS: COMPUTATIONAL PROGRAM  
 

Temporal trends of the input and the reference signals 
are given by functions Fx(j) and Fy(j). 
 
Program FK; 

Const N 1 = 50;  {window width} 
Delta : Extended = 5.0; La : Extended = 0.9; P = 50; 
Ti : Extended = 10;  {integration constant} 
Var i, j, j1, j2, j3 : Integer; 

S, S1, S2, S3, S4, M, E, Y : Extended; 
X, X1, Y1, H, g, g1 : Array [0..N1–1] of 
Extended; 

C : Array [0..N1–1, 0..N1–1] of Extended; 
Begin For j3 : = 0 to N1–1 do 

For i : = 0 to N1–1 do C[ j3, i] : = 0; 
For i : = 0 To N1–1 Do Begin 

X[i] : = 0; H[i] : =0; C[i, i] : = Delta End; 
For j2 : = 1 to P do Begin {j2} 

If j2 <= N1–1 Then Begin j : =j2; j1 : =j2–
1 End 
Else Begin j : = N1–1; j1 : = j
 End; 

For i : = j Down To 1 do X[i] : = X[i–1]; 
X1 [ j] : = Fx( j);  {input signal vector} 
Y1 [ j] : = Fy( j); {output signal vector} 

{signal integration} 
S1 : = 0; S4 : = 0; 
For i : = 1 To j do Begin {i} 

S2 : = ( j – i)/Ti; If S2 > 60 Then S2 : = 0 Else 
S2 : = Exp(–S2); 

S3 : = ( j – i + 1)/Ti; If S3 > 60 Then S3 : = 0 
Else S3 : = Exp(–S3); 

S1 : = S1 + (X1[i] – X1[i – 1])*(S2 – S3); 
S4 : = S4 + (Y1[i] – Y1[i – 1])*(S2 – S3) 
End; {i} 
X[0] : = X1[ j ] – Ti*S1;  Y : = Y1[ j ] –
 Ti*S4; 

{calculation of signal forecast 
error} 

S : = 0; For i : = 0 to j1 do S : = S + X[i]*H[i]; 
E : = Y – S; 

{calculation of the value μ(n)} 
M : = 0; For j3 : = 0 to j1 do Begin S : = 0; 

For i : = 0 to j1 do S : = S + X[i]*C[ j3, i]; 
M : = M + S*X[ j3] End; 

{calculation of the vector of gain} 
For j3 : = 0 to j1 do Begin S : = 0; 

For i : = 0 to j1 do S : = S + C[ j3, i]*X[i]; 
g[ j3] : = S/(LA + M)   End; 

{calculation of the updated estimate} 
For i : = 0 to j1 do H[i] : = H[i] + g[i]*E; 
For i : = 0 to j1 do Begin g1[i] : = 0; 
For j3 : = 0 to j1 do g1[i] : = g1[i] + X[ j3]*C[ j3, i] 
End; 

For j3 : = 0 to j1 do For i : = 0 to j1 do 
C[ j3, i] : = (C[ j3, i] – g[ j3]*g1[i])/La End; { j2} 

{calculation of time lag between the two signals} 
S : = 0; For i : = 0 to N1–1 do S : = S + i*H[i] End End. 
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