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We formulate linear and nonlinear exact and approximate mathematical 
computational models for spherical and hemispherical densities and fluxes of solar 
radiation in scattering and absorbing inhomogeneous plane�parallel layers. In 
particular, we consider Rayleigh and conservative layers. We place emphasis on the 
formulation of boundary conditions for these models. 
 

The principal spectral energy characteristics entering 
the models of climate, weather forecasting schemes, 
radiative and spectral radiative budget calculations, 
simulations of the dynamics of ozone in the troposphere 
and stratosphere, of physicochemical kinetics of the 
atmosphere, and of the state of environment,1–3 are 
mostly the integral radiative characteristics density and 
flux.  One needs for accurate and fast algorithms to 
calculate solar radiation densities and fluxes in the 
atmosphere, ocean, and clouds in order to simulate 
mathematically radiative processes in the terrestrial 
environment within a wide spectral range from UV to IR. 
Engineering techniques of radiative correction for use in 
remote sensing of natural objects, of underlying surfaces 
and of the "atmosphere–ocean" system, which are called 
the two�stream, diffuse, P

1
–approximations of the 

technique of spherical harmonics,4�9 the Sobolev 
approximations,10–13 the Eddington,14 and δ�Eddington15 

approximations etc.,16 are in fact based on computing 
angle�integrated radiative characteristics, which are 
different from fluxes and densities by their norms. Highly 
accurate algorithms used to solve numerically the 
equation of radiation transfer in the optically middle–
dense and dense layers, which employ nonlinear 
procedures to speed up the convergence of iterations of 
the quasidifusion type17, and the technique of average 
fluxes18,19 often include calculating densities or fluxes, 
using nonlinear coefficients as an auxiliary part of the 
problem. 

This paper presents linear and nonlinear exact and 
approximate models for calculating spherical and 
hemispherical densities and fluxes of solar radiation in 
homogeneous and heterogeneous conservative and 
nonconservative absorbing and scattering layers with 

either Lambertian or absolutely black boundaries.20�22 
Refs. 10–13 cite the V.V. Sobolev approximate 

analytical solutions for spherical densities and fluxes of 
solar radiation in a homogeneous layer, which coincide 
with the Eddington approximation and the  
P

1
–approximation of the technique of spherical harmonics 

and offer an algorithm to perform such calculations in 
heterogeneous layers, by sewing explicit solutions for 
homogeneous layers at their boundaries. Such an 
algorithm is described in Ref. 14; it has found wide use in 
computer versions of the radiation transfer blocks of 
climate, weather forecast, photochemistry models, and 
models for remote sensing. In particular, it is used in the 
international LOWTRAN 7 code (1990 version). 
However, such an approach does not always yield a stable 
solution or necessary accuracy. 

We propose fast discrete computational algorithms 
for radiation densities and fluxes in models of the type of 
the "equation of diffusion" (i.e. ordinary second order 
differential equation of the first, second, or third 
types),23–24 or of the system of two common differential 
equations of the first type.25,26 To do this we construct 
homogeneous conservative differential schemes, which are 
solved by the technique of right�hand or flux through–

put.27,28 The background angular distributions of solar 
radiation or the transmission functions not corrected for 
multiple scattering, are calculated by integrating over the 
characteristics of the transfer equation, while its integral 
of collisions is computed using densities and fluxes. 

 
INTEGRAL RADIATIVE CHARACTERISTICS 

 
The intensity of solar radiation Φ (z, ϑ, ϕ ) repeatedly 

scattered into a direction described by zenith angle 
ϑ∈[0,π], μ=cosϑ∈ [–1, 1], and azimuth ϕ∈[0, 2π] at the level 
z∈[0, H] in a plane�parallel layer is determined by the 
boundary–value problem 

 

⎩⎪
⎨
⎪⎧

 

μ 
∂Φ

∂z
 + σ

t
(z) F(z, μ, ϕ) = B(z, μ, ϕ) + F(z, μ, ϕ),

Φ  
Γ
0

 = 0, Φ  
Γ
H

 = f
H
,

 (1) 

Here 

B(z, μ, ϕ) ≡ 
σ

s
(z)

4π
 ⌡⌠

0

2π

 ⌡⌠
–1

1

 Φ(z, μ′, ϕ′) γ(z, cosχ) dμ′ dϕ′ (2) 

 

is the integral of collisions; 
 

F(z, μ, ϕ) = a(z) γ(z, cosχ
0
),  

a(z) ≡ 
S
λ

4  σ
s
(z) exp 

⎣
⎡

⎦
⎤– 

τ(z)
μ

0

 , 
(3) 

 

cosχ = μμ′ + sinϑ sinϑ′ cos(ϕ – ϕ′) 
 

is the source; 

f
H

 = 
q
π
 ⌡⌠

0

2π

 ⌡⌠
0

1

 Φ(H, μ, ϕ)μ dμ dϕ+q Sλ μ
0
 exp 

⎣
⎡

⎦
⎤– 

τ (H)
μ

0

 (4) 

 

is the boundary value at the Lambertian surface with albedo q; 
 

1
4π

 ⌡⌠
0

2π

 ⌡⌠
–1

1

 γ(z, cosχ) dμ dϕ = 
1
2 ⌡⌠

–1

1

 γ(z, cosχ) d cosχ = 1  (5) 
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is the norm of the scattering phase function; 
 

τ(z) = ⌡⌠
0

z

 σ
t
(u) du,  τ

H
 ≡ τ(H) (6) 

 

is the optical depth of a layer, irradiated by parallel flux of 
solar radiation of intensity S

λ
, incident on its top along the 

direction described by angles ϑ
0
, ϕ

0
 (μ

0
=cosϑ

0
). For 

convenience we use the sets 
 

Γ
0
 = {(z, μ): z = 0, μ ≥ 0}, Γ

H
 = {(z, μ): z = H, μ ≤ 0}. 

 

If the spatial coordinate z is geometric, variables 
σ

t
 (z) and σ

s
 (z) are the coefficients of extinction and 

scattering; however, if z is the optical depth, then 
σ

t
 (z) ≡ 1, and σ

s
 (z) is the albedo of a scattering act. Thus, 

a sufficiently general formulation of our boundary–value 
problem (1) makes it possible to have various presentations 
of the models, which would account for the δ – anisotropy 
of scattering, while the initial equation of radiation transfer 
is either transformed using similarity relations,15 or not 
transformed at all.19 

The regular approximation of the continuous solution 
to the problem (1), given at each point of a sphere by linear 
combinations20 
 

Φ(z, ϑ, ϕ) = ∑
k=0

∞

  Y
k
(z, ϑ, ϕ) 

 

of spherical functions 
 

Y
k
(z, ϑ, ϕ) = ∑

m=0

k

 Φm
ck

(z) Cm
k
(ϑ, ϕ) + Φm

sk
(z) Sm

k
(ϑ, ϕ), 

 

results in separation of variables z, ϑ, and ϕ.  Spherical 
harmonics  
 

Cm
k
(ϑ, ϕ) = Pm

k
(μ) cosmϕ, k = 0, 1, 2, ... ; m = 0, 1, 2, ... , k; 

 

Sm
k
(ϑ, ϕ)=(1 – δ

m0
)Pm

k
(μ) sinmϕ, k = 0, 1, 2, ...; m=0, 1, 2, ..., k; 

 

(m ≤ k) form an orthogonal system on a unit sphere. Here 
δ
mn

 is the Kronekker symbol (δ
mn

 = {1 if m = n, 0 if 

m ≠ n}); Pm
k
(μ) are the associated Legendre functions; 

Ð
k
(μ) = P0

k
(μ) are the Legendre polynomials. 

The azimuthal harmonics 
 

Φm
c
(z, ϑ) = ∑

k=m

∞

  Φm
ck

(z) Pm
k
(ϑ),  

Φm
s
(z, ϑ) = ∑

k=m

∞

  Φm
sk

(z) Pm
k
(ϑ),  

Φ0
c
(z, μ) = ∑

k=0

∞

 Φ 0
ck

(z) P
k
(μ) (7) 

 

are determined by formulas 
 

Φm
c
(z, ϑ) = 

1
d

m
π
 ⌡⌠

0

2π

 Φ(z, ϑ, ϕ) cos mϕ dϕ,  

 

Φm
s
(z, ϑ) = 

1
δ
m

π
 ⌡⌠

0

2π

 Φ(z, ϑ, ϕ) sin mϕ dϕ,  

δ
m
 = {2, if m = 0; 1, if m > 0}. 

 

Characteristics of radiation, integral over angles, are 
found in terms of the azimuthal and spherical harmonics. 
The radiation density (actinometric flux) is 
 

n(z) = ⌡⌠
0

2π

 ⌡⌠
0

π

 Φ(z, ϑ, ϕ) sinϑ dϑ dϕ = 

= 2π ⌡⌠
–1

1

 Φ0
c
(z, μ) d μ = 4π Φ 0

c0
(z). (8) 

 

The vertical flux of radiation 
 

J(z)=⌡⌠
0

2π

 ⌡⌠
0

π

 Φ(z, ϑ, ϕ) cosϑ sinϑ dϑ dϕ= 

 

= 2π⌡⌠
–1

1

 Φ0
c
(z, μ) μ d μ = 

4π

3  Φ 0
c1

(z). (9) 

 

The flux of upward going radiation (hemispherical flux for 
μ<0) is 
 

J↑(z) =⌡⌠
0

2π

 ⌡⌠
π/2

π

 Φ(z, ϑ, ϕ) cosϑ sinϑ dϑ dϕ=2π ⌡⌠
–1

0

 Φ0
c
(z, μ) μ dμ = 

=–π
⎩
⎨
⎧ 

 

Φ 0
c0
(z) – 

2
3 Φ

0
c1

(z) + 2 ∑
m=1

∞

 Φ0
c,2m

(z) R
2m
⎭
⎬
⎫ 

 

, J↑(z)<0, (10) 

 

R
2m

 ≡ ⌡⌠
0

1

 μ P
2m

(μ) d μ =(– 1)m+1 
(2 m – 3)!!

2 
m(m + 1)!

 .  

 

The flux of downward going radiation (hemispherical flux 
for μ>0) is 
 

J↓(z) = ⌡⌠
0

2π

 ⌡⌠
0

π/2

 Φ(z, ϑ, ϕ)cosϑ sinϑ dϑ dϕ= 2π ⌡⌠
0

1

 Φ0
c
(z, μ)μ dμ = 

= π

⎩
⎨
⎧ 

 
Φ 0

c0
(z) + 

2
3 Φ

0
c1

(z) + 2 ∑
m=1

∞

 Φ0
c,2m

(z) R
2m
⎭
⎬
⎫ 

 
, J↓(z) > 0. (11) 

 

The vertical flux of repeatedly scattered radiation is 
 

J(z) = J↓(z) + J↑(z). 

 

The horizontal flux of radiation is 

 

W(z)=⌡⌠
0

2π

 ⌡⌠
0

π

 Φ(z, ϑ, ϕ) sinϑ sinϑ dϑ dϕ=2π⌡⌠
–1

1

 Φ0
c
(z, μ) sinϑ dμ = 

= π
⎩
⎨
⎧ 

 
πΦ 0

c0
(z) + 2 ∑

m=1

∞

 Φ0
c,2m

(z) R1
2m
⎭
⎬
⎫ 

 
, 

 

R
1

2m
 ≡⌡⌠

–1

1

 Pk(μ) P
1

1
(μ) dμ =

for 0;/2

0 for 2 1, 0;

0 for 2 , 1.

k

k m m

k m m

=π⎧
⎪

= + ≥⎨
⎪≠ = ≥⎩

 

 

The horizontal flux of radiation in the plane of the solar 
vertical11 is 
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G(z) = ⌡⌠
0

2π

 ⌡⌠
0

π

 Φ(z, ϑ, ϕ) sinϑ cosϕ sinϑ dϑ dϕ =
4π

3  Φ 1
c1

(z). 

 

The hemispherical densities are 
 

n↓(z) = ⌡⌠
0

2π

 ⌡⌠
0

π/2

 Φ(z, ϑ, ϕ) sinϑ dϑ dϕ = 2π ⌡⌠
0

1

 Φ0
c
(z, μ) dμ = 

= 2π

⎩
⎨
⎧ 

 
Φ0

c0
(z) + ∑

m=0

∞

 Φ0
c,2m+1

(z) R0
2m+1

⎭
⎬
⎫ 

 
; (12) 

 

n↑(z) = ⌡⌠
0

2π

 ⌡⌠
π/2

π

 Φ(z, ϑ, ϕ) sinϑ dϑ dϕ = 2π ⌡⌠
–1

0

 Φ0
c
(z, μ) dμ = 

= 2π

⎩
⎨
⎧ 

 
Φ0

c0
(z) – ∑

m=0

∞

 Φ0
c,2m+1

(z) R0
2m+1

⎭
⎬
⎫ 

 
; (13) 

 

R0
2m+1

 ≡ ⌡⌠
0

1

 P
2m+1

(μ) dμ = 
(–1) (–3) ... (– 2 m + 1)

2m+1 (m + 1)!
 , 

m = 0, 1, 2, ... 
 

The average (spherical) cosine or the asymmetry coefficient 
for the brightness phase function is 
 

μ
–

(z) = 
J(z)
n(z) = 

1
3 

Φ0
c1

(z)

Φ0
c0

(z)
 . (14) 

 

The average (hemispherical) cosines are 
 

μ↓(z) = J↓(z) / n↓(z), μ↑(z) = J↑(z) / n↑(z).  (15) 
 

The K–integrals (second order moments) are 
 

K(z) ≡ ⌡⌠
0

2π

 ⌡⌠
0

π

 Φ(z, ϑ, ϕ) [cosϑ]2 sinϑ dϑ dϕ=  

= 2π ⌡⌠
–1

1

 Φ0
c
(z, μ) μ2

 dμ= 
4π

3  [ ]Φ0
c0

(z) + 
2
5 Φ

0
c2

(z)  . (16) 

 

The coefficient of diffusion is 

D(z) = 
K(z)
n(z) = 

1
3 + 

2 Φ0
c2

(z)

15 Φ0
c0

(z)
 . (17) 

 

The hemispherical K–inegrals are 

K↓(z) ≡ ⌡⌠
0

2π

 ⌡⌠
0

π/2

 Φ(z, ϑ, ϕ) [cosϑ]2 sinϑ dϑ dϕ = 

= 2π ⌡⌠
0

1

 Φ0
c
(z, μ) μ2 dμ = 2π

⎩
⎨
⎧ 

 

1
3 Φ

0
c0

(z) + 
1
4 Φ

0
c1

(z) + 
2
15 Φ

0
c2
(z) + 

+ ∑
m=1

∞

 Φ0
c,2m+1

(z) R2
2m+1

⎭
⎬
⎫ 

 
; (18) 

 

K↑(z) ≡ ⌡⌠
0

2π

 ⌡⌠
π/2

π

 Φ(z, ϑ, ϕ) [cosϑ]2 sinϑ dϑ dϕ = 

= 2π ⌡⌠
–1

0

 Φ0
c
(z, μ) μ2 dμ = 2π

⎩
⎨
⎧ 

 

1
3 Φ

0
c0

(z) – 
1
4 Φ

0
c1

(z) + 
2
15 Φ

0
c2
(z) – 

– ∑
m=1

∞

 Φ0
c,2m+1

(z) R2
2m+1

⎭
⎬
⎫ 

 
, (19) 

 

R2
2m+1

 ≡ ⌡⌠
0

1

 μ2 P
2m+1

(μ) d μ =  

= 
⎩⎪
⎨
⎪⎧1/24 at m = 1,

(– 1)m–1 
(m – 1) m (m + 1) ... (2 m – 3)

22m–1 (m + 2)!
 at m ≥ 2. 

 

The hemispherical diffusion coefficients are 
 

D↓(z) = K↓(z) / n↓(z), D↑(z) = K↑(z) / n↑(z). (20) 
 

If the scattering phase function is presented by the 
series expansion over Legendre polynomials 

γ(z, cosχ) = ∑
k=0

∞

 ω
k
(z) P

k
(cosχ), (21) 

one can separate angular variables using the theorem of 
summation21, and then separate out the azimuthal harmonics 
which, in the general case, are calculated using the 
integrals19,20,30 

γ0(z, μ, μ′) = 
1
2π

 ⌡⌠
0

2π

 γ(cosχ) d ϕ = ∑
k=0

∞

 ω
k
(z) P

k
(μ) P

k
(μ′), (22) 

 

γm(z, μ, μ′) = 
1

π δ
m

 ⌡⌠
0

2π

 γ(cosχ) cos m (ϕ – ϕ′) d(ϕ – ϕ′) = 

= 
1

π δ
m

 ⌡⌠
–1

1

 
γ(cosχ) T

m
(y) d y

1 – y2
 , (22) 

 

where y = cos (ϕ – ϕ′), – 1 ≤ y ≤ 1, T
m
( y) = cos m(ϕ –ϕ′) = 

= cos (m arc cos y) are the mth order Chebyshev polynomials 
of the first type. 

If the scattering phase function is presented in the 
form of a series expansion (21) over Legendre polynomials, 
we have 

 

γ+
0
(μ) ≡ ⌡⌠

0

1

 γ0(z, μ, μ′)dμ′ = 

= 1 + 
1
2 ω1

μ + ∑
m=1

∞

 ω
2m+1

(z) P
2m+1

(μ) R0
2m+1

; 

γ–
0
(μ) ≡ ⌡⌠

–1

0

 γ0(z, μ, μ′) dμ′ = 

= 1 – 
1
2 ω1

μ – ∑
m=1

∞

 ω
2m+1

(z) P
2m+1

(μ) R0
2m+1

; 

 

γ
0
(μ) ≡ ⌡⌠

–1

1

 γ0(z, μ, μ′) dμ′ = γ+
0
(z, μ) + γ–

0
(z, μ) = 2. 

 

The characteristics of backscattering 

γ↓
0
(z) ≡ ⌡⌠

0

1

 Φ0
c
(z, μ) dμ ⌡⌠

–1

0

 γ0(z, μ, μ′) dμ′ / ⌡⌠
0

1

 Φ0
c
(z, μ) dμ = 

 

= 
2π Γ↑(z)

n↑(z)
 (23) 
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and 

γ↑
0
(z) ≡ ⌡⌠

–1

0

 Φ0
c
(z, μ) dμ ⌡⌠

0

1

 γ0(z, μ, μ′) dμ′ / ⌡⌠
–1

0

 Φ0
c
(z, μ) dμ = 

= 
2π Γ↑(z)

n↑(z)
 (24) 

 

may be expressed in terms of spherical harmonics employing 

presentations for Ô
c
0 (7), γ0 (22), n↓ (12), and n↑ (13), so that 

 

Γ↓(z) = Φ0
c0

(z) 
⎣
⎡

⎦
⎤1 – ∑

k=0

∞

 ω
2k+1

(z) (R0 
2k+1

)2  + 

 

+ ∑
k=0

∞

  Φ0
c, 2k+1

(z) R0
2k+1

 – ∑
k=0

∞

 Φ0
c, 2k+1

(z)ω
2k+1

(z) ×  

 

× R0
2k+1

T 2 
2k+1

– ∑
k=1

∞

 Φ0
c, 2k

(z)∑
n=0

∞

 ω
2n+1

(z) R0
2n+1

 T
2k, 2n+1

; 

 

Γ↑(z) = Φ0
c0

(z) 
⎣
⎡

⎦
⎤1 + ∑

k=0

∞

 ω
2k+1

(z) (R0
2k+1

)2  –  

 

— ∑
k=0

∞

 Φ0
c, 2k+1

(z) R0
2k+1

 – ∑
k=0

∞

 Φ0
c, 2k+1

(z) ω
2k+1

(z) × 

 

× R0
2k+1

T 2
2k+1

+ ∑
k=1

∞

 Φ0
c, 2k

(z)∑
n=0

∞

 ω
2n+1

(z) R0
2n+1

 T
2k, 2n+1

; 

 

T2
n
 ≡ ⌡⌠

0

1

 [P
n
(μ)]2 d μ = 

1
2 n +1 ; 

 

T
2k, 2n+1

 ≡ ⌡⌠
0

1

 P
2k

(μ) P
2n+1

(μ)d μ =  

 

= 
(2 k)! (2 n + 1)!

22k+2n+1 (2 k – 2 n – 1) (k + n + 1) k! n!
 . 

 

Using the exact presentations for n↓ (12),  

n↑ (13), J↑ (10), and J↓ (11) one may establish the 
following exact relations: 
 

J↓ + J↑ = 
4π

3  Φ0
c1

(z),   n↓ + n↑ = 4π Φ0
c0

(z), 

 

J↓ – J↑ = 2π
⎩
⎨
⎧ 

 

Φ0
c0

(z) + 2 ∑
m=1

∞

 Φ0
c,2m

(z) R
2m
⎭
⎬
⎫ 

 

,   

 

Φ0
c1

 = 
3
4π

 (J↓ + J↑), 

 

n↓ – n↑ = 4π ∑
m=0

∞

 Φ0
c,2m+1

(z) R0
2m+1

,  Φ0
c0

 = 
1
4π

 (n↓ + n↑). 

 

In context of the P
1
–approximation of the technique 

of spherical harmonics, when 
 

Φ0
c
(z, μ)=Φ0

c0
(z)+ Φ0

c1
(z) P

1
(μ), P

1
(μ)=μ, (25) 

 

radiative characteristics take the following values: 
 

D(z) = 
1
3 , K(z) = 

4π

3  Φ0
c0
(z), W(z) = π2 Φ0

c0
(z), (26) 

J↓ = π {Φ0
c0
(z) + 

2
3 Φ

0
c1
(z)}, J↓ = – π {Φ0

c0
(z) – 

2
3 Φ

0
c1
(z)}, (27) 

 

n↓ = 2π {Φ0
c0
(z) + 

1
2 Φ

0
c1
(z)}, n↓ = 2π {Φ0

c0
(z) – 

1
2 Φ

0
c1
(z)}, (28) 

 

μ↑(z) = – 
1
2 

⎣
⎢
⎡

⎦
⎥
⎤

1 – 
1
6 

Φ0
c1

(z)

Φ0
c0

(z) – 
1
2 Φ

0
c1

(z)
 ,  

 

μ↓(z) = 
1
2 

⎣
⎢
⎡

⎦
⎥
⎤

1 + 
1
6 

Φ0
c1

(z)

Φ0
c0

(z) + 
1
2 Φ

0
c1

(z)
, (29) 

 

K↓(z) = 2π {13 Φ0
c0
(z) + 

1
4 Φ

0
c1

(z)},  
 

K↑(z) = 2π {13 Φ0
c0
(z) – 

1
4 Φ

0
c1

(z)},  (30) 

 

D↓(z) =
1
3 + 

1
12 

Φ0
c1

(z)

Φ0
c0

(z) + 
1
2 Φ

0
c1

(z)
 ,  

D↑(z) = 
1
3 – 

1
12 

Φ0
c1

(z)

Φ0
c0

(z) – 
1
2 Φ

0
c1

(z)
 ,  (31) 

 

Γ↓(z) = Φ0
c0

(z) 
⎣
⎡

⎦
⎤1 – ∑

k=0

∞

 ω
2k+1

(z) (R0
2k+1

)2  + 

 

+ 
1
2 Φ

0
c1

(z) ⎣
⎡

⎦
⎤1 – 

ω
1
(z)

3  , 

 

Γ↑(z) = Φ0
c0

(z) 
⎣
⎡

⎦
⎤1 + ∑

k=0

∞

 ω
2k+1

(z) (R0
2k+1

)2  – 

 

— 
1
2 Φ

0
c1

(z) ⎣
⎡

⎦
⎤1 + 

ω
1
(z)

3  , 

 

and the following approximate relations are valid: 
 

J↓ – J↑ = 2π F0
c0

(z), n↓ – n↑ = 2π Φ0
c1

(z), 
 

J = J£ + J↑ = 
2
3 (n

↓
 – n↑), n = n↓ + n↑ = 2(J↓ – J↑), 

 

Φ0
c0

(z) = 
1
2π

 (J↓ – J↑),  

 

Φ0
c1

(z) = 
1
2π

 (n↓ – n↑), 

 

Φ0
c1

(z) = 
3
7π

 (2 J↓ – n↑),  

 

Φ0
c0

(z) = 
3
7π

 (2
3 n

↑ – J↓), 

 

n↓ = 
1
4 (7 J

↓ – J↑), n↑ = 
1
4 (J

↓ – 7 J↑),  

n↓ = 
1
2 (n + 

2
3 J), n↑ = 

1
2 (n – 

3
2 J), 

 

J↓ = 
1
12 (7 n

↓ – n↑), J↑ = 
1
12 (n

↓ – 7 n↑),  

J↓ = 
1
4 (n + 2 J), J↑ = – 

1
4 (n – 2 J), 
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μ↓(z) = 
7 n↓ – n↑

12 n↓
 = 

4 J↓

7 J↓ – J↑
 ,  

μ↑(z) = 
n↓ – 7 n↑

12 n↑
 = 

4 J↑

J↓ – 7 J↑
 , 

 

D↓(z) = 
1
3 + 

1
12 

n↓ – n↑

n↓
 = 

5
12 – 

1
12 

n↑

n↓
 = 

= 
1
3 + 

1
2 

J↓ + J↑

7 J↓ – J↑
 , 

D↑(z) = 
1
3 – 

1
12 

n↓ – n↑

n↑
 = 

5
12 – 

1
12 

n↓

n↑
 = 

 

= 
1
3 – 

1
2 

J↓ + J↑

J↓ – 7 J↑
 . 

 

If the scattering phase function involves two 
components then 
 

γ+
0
(z, μ) = 1 + 

1
2 ω1

(z) μ,   γ–
0
(z, μ) = 1 – 

1
2 ω1

(z) μ, 

γ↓
0
(z) = 1 – 

1
2 ω1

(z) μ↓(z),   γ↑
0
(z) = 1 + 

1
2 ω1

(z) μ↑(z). 

 

For the Rayleigh scattering phase function 
 

γ
R
(cosχ) = 

3
4 [1 + cos2χ],  

 

γ0
R
(μ, μ′) = 1 + 

1
2 P2

(μ) P
2
(μ′),  

with coefficients ω
0
=1, ω

1
=0, ω

2
=0.5 and norm given by 

expression (5), we have 
 

γ+
0
(z, μ) = 1, γ–

0
(z, μ) = 1, γ↓

0
(z) = 1, γ↑

0
(z) = 1. (32) 

 
P

1
 AND P

2
–APPROXIMATIONS OF THE 

TECHNIQUE OF SPHERICAL HARMONICS 
 

As is seen from the above, all the integral radiative 

characteristics n (8), J (9), W, K (16), D (17), μ
–

 (14),  

n↓ (12), n↑ (13), J↓(11), J↑(10), μ↓, μ↑ (15),  

γ↓
0
 (23), γ↑

0
 (24), K↓ (18), K↑ (19), D↓, D↑ (20) are 

determined by zeroth azimuthal harmonic Φ
c

0
 (z, μ) which is 

the solution to the boundary–value problem19,20 
 

⎩⎪
⎨
⎪⎧

μ
∂Φ0

c

∂ z
+σ

t
(z) Φ0

c
(z,μ)=

σ
s
(z)

2  ⌡⌠
–1

1

 Φ0
c
(z, μ′) ×

× γ0(z, μ, μ′) dμ′ +a(z) γ0(z, μ, μ
0
),

Φ0
c

 
Γ
0

 = 0, Φ0
c

 
Γ
H

 = Φ*,

 (33) 

 

Φ* ≡ 2 q ⌡⌠
0

1

 Φ0
c
(H, μ) μ d μ + f*

H
,   

 

f*
H
 ≡ q Sλ μ

0
 exp 

⎣
⎡

⎦
⎤– 

τ(H)
μ

0

 , 

 

obtained by integrating equation (1) over azimuth 
 ϕ ∈ [0,2π] with the weight 1/2π . 

Spherical densities n (8) are exactly determined by 

spherical harmonic Φ
c0

0
 (z), fluxes J (9) by Φ

c1

0
 (z),  

K – integrals (16) and the coefficients of diffusion D (17) 

using Φ
c2

0
 (z) and Φ

c0

0
 (z), average cosines –

μ (14) are 

determined by Φ
c1

0
 (z) and Φ

c0

0
(z). Other characteristics may 

be calculated only approximately, using spherical 
harmonics, since they are presented by infinite series. 

The system of equations for spherical harmonics4–8 is 
infinite. In context of the P

n
– approximation of the technique 

of spherical harmonics, expansion (7) is formally truncated, so 

that all the components Φ
ck

0
 (z) with numbers k>n are omitted 

and, as a consequence, the components to be accounted for in 
the expansion of the scattering phase function (22) with the 
index k varing from 0 to K and k ≤ K≤n. 

We write out those equations which contain the 

harmonics Φ
c0

0
, Φ

c1

0
, Φ

c2

0
 (Ref. 20) 

 

1
3 

d Φ0
c1

d z  + [σ
t
(z) – σ

s
(z)] Φ0

c0
(z) = a(z); (34) 

 

2
5 

d Φ0
c2

d z  + 
d Φ0

c0

d z  + ⎣
⎡

⎦
⎤

σ
t
(z) – 

σ
s
(z) ω

1
(z)

3
 

×

 
 

× Φ0
c1

(z) = a(z) ω
1
(z) μ

0
; (35) 

 

3
7 

d Φ0
c3

d z  + 
2
3 

d Φ0
c1

d z  + ⎣
⎡

⎦
⎤

σ
t
(z) – 

σ
s
(z) ω

2
(z)

5  × 

 

× Φ0
c2

(z) = a(z) ω
2
(z) P

2
(μ

0
). (36) 

 

The harmonic F
c2

0
 is omitted within the  

P
1
– approximation, so that a closed system of equations 

(34) is obtained, and 
 

dΦ0
c0

dz  + ⎣
⎡

⎦
⎤

σ
t
(z) – 

σ
s
(z) ω

1
(z)

3  F0
c1

(z) = a(z) ω
1
(z)μ

0
. (37) 

 

Omitting the Φ
c3

0
 component within the  

P
2
– approximation, we find an explicit expression from 

equations (34) and (36) 
 

Φ0
c2

(z) = A(z) + B(z) Φ0
c0

(z), (38) 
 

A(z) = 2 a(z) ⎣
⎡

⎦
⎤ω

2
(z)

2  P
2
(μ

0
) – 1  / ⎣

⎡
⎦
⎤

σ
t
(z) – 

σ
s
(z) ω

2
(z)

5  , 

 

B(z) = 2 [σ
t
(z) – σ

s
(z)] / ⎣

⎡
⎦
⎤

σ
t
(z) – 

σ
s
(z) ω

2
(z)

5  , 

 

using which one may approximately estimate Φ
c2

0
 (z) within 

the P
1
– approximation using spherical harmonic Φ

c0

0
 (z) and 

correct the radiative characteristics containing Φ
c2

0
 (z). Note 

that, within the P
1
– approximation, the radiative 

characteristics corresponding to isotropic and Rayleigh 
scattering phase functions coincide with each other. 
However, they differ from each other within the P

2
– 

approximation, since the component Φ
c2

0  (z) accounts for the 

anisotropy of Rayleigh scattering. Using the presentation 

(38) for Φ
c2

0
 (z) one may reduce equation (35) to the form 
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r(z) 
dΦ0

c0

dz  + t(z) Φ0
c0

(z) + s(z) Φ0
c1

(z) = p(z), (39) 

 

r(z) = 1 + 
2
5 B(z) , t(z) = 1 + 

2
5 

d B
d z  ,  

 

s(z) = σ
t
(z) – 

σ
s
(z) ω

1
(z)

3  , 

 

p(z) = a(z) ω
1
(z) μ

0
 – 

2
5 

d A
d z = C(z) exp 

⎣
⎡

⎦
⎤– 

τ(z)
μ

0

 , 

 

so then the harmonics Φ
c0

0
 (z) and Φ

c1

0
 (z) may be calculated 

within the P
2
–approximation using the system of equations 

(34) and (39). 
If one introduces the coefficient of asymmetry of the 

scattering phase function 
 

g(z) = ⌡⌠
–1

1

 γ(μ) μ d μ / ⌡⌠
–1

1

 γ(μ) d μ = 
ω

1
(z)

3  

 

and proceeds to the optical depth (6), then the system of 
equations (34) and (37) may be written in the form 
 

1
3 

d Φ0
c1

d τ
 + [1 – ω

s
(τ)] Φ0

c0
(τ) = 

Sλ

4  ω
s
(τ) exp 

⎣
⎡

⎦
⎤– 

τ

μ
0

 , (40) 

 

d Φ0
c0

d t  + [1 – ω
s
(τ) g(τ)] Φ0

c1
(τ) =  

 

= 
3
4 Sλ ω

s
(τ) g(τ) μ

0
 exp 

⎣
⎡

⎦
⎤– 

τ

μ
0

 . (41) 

 

Comparing the system of equations (40)–(41) with 
Sobolev approximation,10–13 we have 
 

Φ
–

 = Φ0
c0

 ,   H
–

 = Φ0
c1

 / 3,  n = 4π Φ
–

, J = 4 π H
–

. 
 

Note that, according to Refs. 14–15, the spherical 

harmonics I
0
 = Φ

c0

0
, I

1
 = Φ

c1

0
, and the system (40)–(41) 

coincides with the equations from the Eddington 
approximation. Note also that one–sided downward 
fluxes introduced in Ref.14 coincide with our fluxes 

(F↓
 = J↓), while the upward ones have opposite signs 

(F↑ = – J↑). 

 
EXACT AND APPROXIMATE EQUATIONS FOR 

SPHERICAL DENSITY AND FLUX 

 
Let us integrate equation (33) over μ within the 

interval [–1,1] with unit weight and with weight μ, using 
the expansion of the zeroth azimuthal harmonic of the 
scattering phase function (22) and definitions of n (8),  
J (9), and D (17), to obtain a system of exact equations 

 

dJ
dz + [σ

t
(z) – σ

s
(z)] n(z) = 4 π a(z), (42) 

 

d [D(z) n(z)]
dz +⎣

⎡
⎦
⎤

σ
t
(z) – 

σ
s
(z) ω

1
(z)

3  J(z)=
4π

3  a(z) ω
1
(z) μ

0
. (43) 

 

When the right–hand side of equation (43) is zero, the 
system (42)–(43) is called the "equations of quasi–
diffusion"17. 

By excluding the density n(z) from the system (42)–
(43) we obtain exact equation for vertical flux 

 

d
d z 

D(z)
σ

t
(z) – σ

s
(z)

 
d J
d z — ⎣

⎡
⎦
⎤

σ
t
(z) – 

σ
s
(z) ω

1
(z)

3  J(z)= 

 

=–

⎩
⎨
⎧ 

 

4π

3  a(z) ω
1
(z) μ

0 
– 

d
d z 

D(z) 4π a(z)
σ

t
(z) – σ

s
(z)
⎭
⎬
⎫ 

 

. (44) 

 
By excluding the flux J(z) we obtain exact equation 

of the "diffusion equation" type that describes vertical 
profile of the radiation density 
 
d
dz 

3
3σ

t
(z) – σ

s
(z) ω

1
(z)

 
d [D(z) n(z)]

dz  – [σ
t
(z) – σ

s
(z)] n(z) = 

 

=–

⎩
⎨
⎧ 

 

4π a(z) – 
d
dz 

4π a(z) ω
1
(z) μ

0

3σ
t
(z) – σ

s
(z) ω

1
(z)
⎭
⎬
⎫ 

 

. (45) 

 

For a conservative layer with zero absorption, when 
σ

t
(z) = σ

s
(z), both density and flux are found from the exact 

equations 
 

d J
d z = 4π a(z), (46) 

 

3 
d [D(z) n(z)]

d z +σ
t
(z) [3 – ω

1
(z)] J(z)=4π a(z) ω

1
(z) μ

0
.
 
(47) 

 

Density satisfies the exact "equation of diffusion" 
 

d
d z 

3
σ

t
(z) [3 – ω

1
(z)]

 
d [D(z) n(z)]

d z  = 

 

= –

⎩⎪
⎨
⎪⎧

 

 

4π a(z) – 
d

d z 
4π a(z) ω

1
(z) μ

0

σ
t
(z) [3 – ω

1
(z)]

⎭⎪
⎬
⎪⎫

 

 

, (48) 

 
and from Eq. (46) the flux may be written explicitly using 
quadratures. Equation (46) is solved explicitly10–12 for the 
case of a homogeneous layer with a Lambertian boundary. 
Systems (42)–(43) and (46)–(47), as well as "equations of 
diffusion" (44), (45), and (48) contain a nonlinear coefficient 
D(z). Within the P

1
–approximation D(z) = 1/3 = const, and 

the above problems become linear. 
 

EXACT AND APPROXIMATE EQUATIONS FOR 
HEMISPHERICAL DENSITIES AND FLUXES 

 
Let us integrate equation (33) over μ within the interval 

[0,1] and [–1,0] and refer to the definitions of n↓ (12), 

n↑ (13), J↓ (11), J↑ (10), μ↓, μ↑ (15), γ↓
0
 (23), γ↑

0
 (24). After 

certain identical transformations we obtain a system of exact 
equations for hemispherical fluxes with nonlinear parameters 

μ↓ , μ↑ , γ↓
0
, γ↑

0
  

 

d J↓

d z  +⎣
⎡

⎦
⎤σ

t
(z)–σ

s
(z)

μ↓(z)
 + 

σ
s
(z) γ↓

0
(z)

2 μ↓(z)
J↓(z) – 

 

— 
σ

s
(z) γ↑

0
(z)

2 μ↑(z)
 

J↑(z)=2π a(z) γ+
0
(z, μ

0
),  (49) 
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d J↑

d z  +⎣
⎡

⎦
⎤σ

t
(z)–σ

s
(z)

μ↑(z)
 + 

σ
s
(z) γ↑

0
(z)

2 μ↑(z)
J↑(z)–  

 

— 

σ
s
(z) γ↓

0
(z)

2 μ↓(z)
 J↓(z)=2π a(z) γ–

0
(z, μ

0
). (50) 

 

A similar system of differential equations was 

formulated by 
′
E.P. Zege9 for the two–stream 

approximation of radiation transfer through a homogeneous 
layer. Such an approach was initially suggested by 
E.S. Kuznetsov.31 

Using definitions of μ↓ , μ↑ (15) and Eqs. (49)–(50) we 
obtain a system of exact equations for hemispherical densities 

 

d [μ↓(z) n↓(z)]
dz  + 

⎩
⎨
⎧ 

 

σ
t
(z) – 

σ
s
(z)

2  [2 – γ↓
0
(z)]

⎭
⎬
⎫ 

 

n↓(z) – 

 

– 
σ

s
(z)

2  γ↑
0
(z) n↑(z) = 2π a(z) γ+

0
(z, μ

0
), (51) 

 

d [μ↑(z) n↑(z)]
dz  + 

⎩
⎨
⎧ 

 

σ
t
(z) – 

σ
s
(z)

2  [2 – γ↑
0
(z)]

⎭
⎬
⎫ 

 

n↑(z) – 

 

– 
σ

s
(z)

2  γ↓
0
(z) n↓(z) = 2π a(z) γ–

0
(z, μ

0
). (52) 

 

Such a system is used to make iterations in the 
technique of average fluxes18 in order to faster convergence. 

Within the P
1
–approximation the system (49)–(50) 

becomes linear and closed 
 

4 
d J↓

dz  + [7 σ
t
(z) – 4 σ

s
(z) – σ

s
(z) ω

1
(z)] J↓(z) + 

 

+ [4 σ
s
(z) – σ

t
(z) – σ

s
(z) ω

1
(z)] J↑(z) = 8π a(z) γ+

0
(z, μ

0
), (53) 

 

4 
d J↑

dz  – [7 σ
t
(z) – 4 σ

s
(z) – σ

s
(z) ω

1
(z)] J↑(z) – 

 

–[4 σ
s
(z) – σ

t
(z) – σ

s
(z) ω

1
(z)] J↓(z) = 8π a(z) γ–

0
(z, μ

0
). (54) 

 

Within the P
1
–approximation the system (51)–(52) 

contains the nonlinear parameters μ↓(z) and μ↑(z) 
 

d [μ↓(z) n↓(z)]
dz  + 

⎩
⎨
⎧ 

 

σ
t
(z) – 

σ
s
(z)

2  ⎣
⎡

⎦
⎤1 + 

ω
1
(z)

2  μ↓(z)  

⎭
⎬
⎫ 

 

n↓(z) – 

 

– 
σ

s
(z)

2  ⎣
⎡

⎦
⎤1 + 

ω
1
(z)

2  μ↑(z)  n↑(z) = 2π a(z) γ+
0
(z, μ

0
), (55) 

 

d [μ↑(z) n↑(z)]
dz  +

⎩
⎨
⎧ 

 

σ
t
(z) – 

σ
s
(z)

2  ⎣
⎡

⎦
⎤1 – 

ω
1
(z)

2  μ↑(z)  

⎭
⎬
⎫ 

 

n↑(z) – 

 

– 
σ

s
(z)

2  ⎣
⎡

⎦
⎤1 – 

ω
1
(z)

2  μ↓(z)  n↓(z) = 2π a(z) γ–
0
(z, μ

0
). (56) 

 

In the case of the Rayleigh scattering the terms 
involving ω

1
 (z) are omitted from systems (53)–(54) and 

(55)–(56), instead values (32) are used. In the case of a 
conservative layer it is sufficient to set σ

t
(z) = σ

s
(z). 

By integrating equation (33) over μ on the intervals 
[0, 1], and [–1, 0] with weights 1 and μ, one may obtain 
a system of exact equations, which simultaneously yields 

hemispherical densities n↓, n↑, and fluxes J↓, J↑ 
(Ref. 11). 

 
BOUNDARY CONDITIONS 

 
As demonstrated above, radiative characteristics may 

be expressed in terms of spherical harmonics. Therefore, we 
shall formulate boundary conditions for the models of fluxes 
and densities, written in the form of a system of ordinary 
differential equations of the first order, in a way similar to 
that used in the method of spherical harmonics,5,22,32 i.e. 
based on the boundary–value problem for a zeroth order 
azimuthal harmonic (33). Demanding that the physical 
condition of balance of radiation fluxes at the boundary of 
the layer with the "vacuum" be satisfied 
 

at Γ
0
: ⌡⌠

0

1

 Φ0
c
(0, μ) μ d μ = 0, (57) 

 

and 

at Γ
H
: ⌡⌠

–1

0

 [Φ0
c
(H, μ) – Φ*] μ d μ = 0, (58) 

 

when 
 

μ Φ0
c
(0, μ) Γ

0
 ≡ 0,   μ [Φ0

c
(H, μ) – Φ*] Γ

H
 ≡ 0,  

and assuming that the expansion (7) exists, with the 
account for orthogonality of the Legendre polynomials 
within the interval [0, 1] we obtain the following 
conditions for the Fourier coefficients7 (m = 0, 1, 2, ...): 
 

⌡⌠
0

1

 μ Φ0
c
(0, μ) P

2m
(μ) d μ = 0,  

 

⌡⌠
–1

0

 μ [Φ0
c
(H, μ) – Φ*] P

2m
(μ) d μ = 0.  (59) 

 

Using recursive relations for the Legendre 
polynomials, expressions (59) may be written in the 
equivalent form (m=0,1,2,...) 
 

⌡⌠
0

1

 Φ0
c
(0, μ) P

2m+1
(μ) d μ = 0,  

 

 ⌡⌠
–1

0

 [Φ0
c
(H, μ) – Φ*] P

2m+1
(μ) d μ = 0. (60) 

 

Expressions (60) are so–called Marshak 
conditions.5,32,33 As shown in Ref. 5 such approximate 
boundary conditions bring the lowest error of the technique 
of spherical harmonics, i.e. are "the best" in the sense of 
variational principle, which minimizes the values of a 
quadratic functional within the Ð

2m+1
–approximation. 

Let us find Marshak conditions for the  
P

1
–approximation of the technique of spherical harmonics 

for systems of equations (34)–(35), (34) and (37), (34) 
and (39), and (40)–(41). By substituting expansion (7) 
into (57) and (58) we obtain 
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at Γ
0
: 
1
2 Φ

0
c0

(0) + 
1
3 Φ

0
c1

(0) = 0, (61) 

 

at Γ
H
: (1 – q)

1
2 Φ

0
c0

(H) = (1 + q) 
1
3 Φ

0
c1

(H) + 
1
2 f*H . (62) 

 
Let us now substitute the exact presentation Φ0

c1
 and 

the P
1
–approximation for Φ0

c0
 into the Marshak conditions 

(61), (62) in terms of the hemispherical fluxes 
 

J↓(0) = 0, – J↑(H) = q J↓(H) + π f*
H
 . (63) 

 
As is seen, Marshak conditions within the  

P
1
–approximation are exact for the boundary values of 

hemispherical fluxes. Within the same approximation the 
boundary conditions from Sobolev model10–13 coincide with 
Marshak conditions. The same conditions are used in 
Eddington approximation.14 

Below we present exact presentations of the 
boundary value in terms of 
– spherical harmonics 
 

Φ*=f*
H

 + q Φ0
c0

(H) + 
2
3 q

 
Φ0

c1
(H) + 2 q ∑

m=1

∞

 Φ0
c,2m

(H) R
2m

; (64) 

 
– spherical densities and fluxes 

Φ* = f*
H

 + q 
n(H)
4π

 + 2 q 
J(H)
4π

 + 2 q ∑
m=1

∞

 Φ0
c,2m

(H) R
2m

; (65) 

 
– hemispherical densities and fluxes 

Φ* = f*
H
 + 

q
p J↓(H); Φ* = f*

H
 + 

q
p μ↓(H) n↓(H). (66) 

 
Within the P

1
–approximation we have 

Φ* = f*
H
 + q Φ0

c0
(H) + 

2
3 q Φ0

c1
(H);  

Φ* = f*
H
 + q 

n(H)
4π

 + q 
J(H)
4π

 . (67) 

 
The exact and the approximate computational models 

for spherical fluxes and densities of solar radiation are 
reduced to two basic forms, i.e. to 
– a system of ordinary differential equations of the first 
order 

 

d w
d z  + α(z) ν(z) = ϕ(z) exp 

⎣
⎡

⎦
⎤– 

τ(z)
μ

0

 , (68) 

 

d ν
d z + β(z) w(z) = p(z) exp 

⎣
⎡

⎦
⎤– 

τ(z)
μ

0

 , (69) 

with the boundary conditions 
 
w(0) = α

0
 ν(0) + ϕ

0
, w(H) = α

H
 ν(H) + ϕ

H
, (70) 

 
–or to a single equation of the second order of the type of 
the "equation of diffusion" 
 

d
d z m(z) 

d u
d z – k 

2 (z) u = – f(z) (71) 

 

with the source 
 

f(z) = F(z) exp 
⎣
⎡

⎦
⎤– 

τ(z)
μ

0

 

 

and the boundary conditions 

m(z) 
d u
d z 

 
z=0

 = κ
0
 u(0) + β

0
,  

 

m(z) 
d u
d z 

 
z=H

 = κ
H
 u(H) + β

H
. (72) 

 

Usually the "diffusion models" (71)–(72) are derived from 
the system of two equations (68)–(69) with the boundary 
conditions (70) by excluding one of the components, w(z) 
or ν(z)21. 

To make formulation of the problem on calculating 
spherical fluxes and densities complete, one needs to add 
two boundary conditions to the system of equations (68)–
(69), which would, in a certain sense, account for boundary 
conditions (33). One may choose such conditions arbitrarily, 
since the boundary conditions (33) may be approximately 
satisfied in different ways. Equation (68) is obtained by 
integrating over μ along the interval [–1, 1] with unit 
weight, and equation (69) – by the same operation with 
weight μ. Similar transformations appear inappropriate for 
formulation of the boundary conditions (70), since 
conditions (33) are single–sided and they cannot be 
integrated over μ ∈ [–1, 1]. 

Let us integrate conditions (33) over μ for Ã
0
 along 

the interval [0, 1], and for Ã
H 

along the interval [–1, 0], to 

obtain the exact relations 
 

for Γ
0
: Φ0

c0
(0) + 

1
2 Φ

0
c1

(0) + ∑
m=1

∞

 Φ0
c,2m+1

(0) R0
2m+1

 = 0, 

or 

2 n(0) + 3 J(0) + 8π ∑
m=1

∞

 Φ0
c,2m+1

(0) R0
2m+1

 = 0; 

 

for Γ
H
: Φ0

c0
(H) – 

1
2 Φ

0
c1
(H) – ∑

m=1

∞

 Φ0
c,2m+1

(H) R0
2m+1

 = Φ*, (73) 

 

or  

2 n(H) – 3 J(H) – 8π ∑
m=1

∞

 Φ0
c,2m+1

(H) R0
2m+1

 = 8π Φ*. (74) 

 

With the account for Eq. (64) condition (73) can be 
reduced to the form 
 

(1 – q) Φ0
c0
 (H) = f*

H
 + ( )1

2 + 
2
3 q  Φ0

c1
 (H) +  

 

+ ∑
m=1

∞

 Φ0
c,2m+1

 (H) R0
2m+1

+ 2 q ∑
m=1

∞

 Φ0
c,2m

 (H) R
2m

 , 

 

and using (65) condition (74) may be written as follows: 
 

(1 – q) 
n(H)
4π

 = f*
H
 + ( )3

2 + 2 q  
J(H)
4π

 +  

 

+ ∑
m=1

∞

 Φ0
c,2m+1

(H) R0
2m+1

 + 2 q ∑
m=1

∞

 Φ0
c,2m

(H) R
2m

 .  

 

Within the P
1
–approximation 

 

2 Φ0
c0
(0) + Φ0

c1
(0) = 0, 

 

(1 – q) Φ0
c0
(H) = f*

H
 + ( )1

2 + 
2
3 q  Φ0

c1
(H); (75) 

2 n(0) + 3 J(0) = 0,  
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2(1 – q) n(H) = 8π f*
H
 + (3 + 4 q) J(H). (76) 

 

We integrate condition (33) over μ with the weight μ 
for Ã

0
 along the interval [0, 1], and for Ã

H
 along the 

interval [–1, 0] 
 

for Γ
0
: Φ0

c0
(0) + 

2
3 Φ

0
c1
(0) + 2 ∑

m=1

∞

 Φ0
c,2m

(0) R
2m

 = 0 

or 

n(0) + 2 J(0) + 8π ∑
m=1

∞

 Φ0
c,2m

(0) R
2m

 = 0; 

for Γ
H
: Φ0

c0
(H) – 

2
3 Φ

0
c1
(H) + 2 ∑

m=1

∞

 Φ0
c,2m

(H) R
2m

 = 0 (77) 

 

or 

n(H) – 2 J(H) + 8π ∑
m=1

∞

 Φ0
c,2m

(H) R
2m

 = 0. (78) 

 

Using condition (64) we find from (77) that 
 

(1 – q) Φ0
c0
(H) = 

 

= f*
H
 + (1 + q) 

2
3 Φ

0
c1

(H) – 2(1 – q) ∑
m=1

∞

 Φ0
c,2m

(H) R
2m

 , 

 

and using condition (66) we find from (78) that 
 

(1 – q) n(H) = 

= 4π f*
H
 + 2(1 + q) J(H) – (1 – q) 8π ∑

m=1

∞

 Φ0
c,2m

(H) R
2m

 . 

 

Within the P
1
–approximation Marshak conditions are 

 

Φ0
c0
(0) + 

2
3 Φ

0
c1
(0) = 0, 

(1 – q) Φ0
c0
(H) = f*

H
 + (1 + q) 

2
3 Φ

0
c1
(H); (79) 

 

n(0) + 2 J(0) = 0,  
 

(1 – q) n(H) = 4π f*
H
 + 2(1 + q) J(H). (80) 

 

As is seen, boundary conditions (75)–(76) and 
(79)–(80), constructed by different means as it were, 
only differ in values of their coefficients within the  
P

1
–approximation. Note that the second approach is the 

one used to formulate practically all the Marshak 
conditions. 

The exact and approximate models for calculating 

hemispherical densities (w = μ↓n↓, ν = μ↑n↑) or fluxes 

(w = J↓, ν = J↑) are described by systems of differential 
equations 
 

d w
d z  + a(z) w + b(z) ν = ϕ(z) exp 

⎣
⎡

⎦
⎤– 

τ(z)
μ

0

 , (81) 

 

d ν
d z + c(z) ν + d(z) w = p(z) exp 

⎣
⎡

⎦
⎤– 

τ(z)
μ

0

 (82) 

 
with the boundary conditions 
 

ξ
0
 ν(0) = α

0
 w(0) + ϕ

0
, ξ

H
 ν(H) = α

H
 w(H) + ϕ

H
.  (83) 

When setting the boundary conditions to calculate 
hemispherical densities and fluxes with the first technique 

(that is using the definitions of n↓ (12), n↑ (13), μ↓ , μ↑ 

(15), J↓ (11), J↑ (10)), we obtain the exact relations from 
conditions (33) 
 

for Γ
0
: n↓ (0) = 0, (84) 

 

for Γ
H
: n↑(H) = 2 π Φ*, (85) 

 

which may be written in different ways using expression 
(66) 
 

n↑(H) = 2 π f*
H
 + 2 q J↓(H);  

 

n↑(H) = 2π f*
H
 + 2 q μ↓(H) n↓(H); (86) 

 

1

μ↑(H)
 J↑(H) = 2π f*

H
 + 2 q μ↓(H) n↓(H); 

 
1

μ↑(H)
 J↑(H) = 2π f*

H
 + 2 q J↓(H). (87) 

 

Let us now use presentations of μ↓ and μ↑ in the P
1
–

approximation to write conditions (86), (87) in the 
following form: 
 

(6 + q) n↑(H) = 12π f*
H
 + 7 q n↓(H), (88) 

 

– 7 J↑(H) = 8π f*
H
 + (8 q – 1) J↓(H). (89) 

 

In accordance with the second approach, we use (66) 
to transform the exact boundary conditions 
 

for Γ
0
: J↓(0) = 0, (90) 

 

for Γ
H
: J↑(H) = π Φ* (91) 

 

into the form 
 

– J↑(H) = π f*
H
 + q J↓(H),  –J↑(H) = π f*

H
 + q μ↓(H) n↓(H), 

 

– μ↑(H) n↑(H) = π f*
H
 + q μ↓(H) n↓(H), 

 

– μ↑(H) n↑(H) = π f*
H
 + q J↓(H). 

 

Within the P
1
–approximation we have 

 

(7 + q) n↑(H) = 12 π f*
H
 + (7 q + 1) n↓(H). (92) 

 

Expressions (90)–(91), obtained according to the 
second technique are the exact boundary conditions for the 
system (49)–(50). Meanwhile, to get rid of the nonlinear 
parameters, conditions (84) and (88), obtained following 
the first technique, may be used for system (51)–(52). 
Condition (92), obtained by the second technique within 
P

1
–approximation is also applicable. 

Most algorithms of radiative correction, developed for 
problems of remote sensing, are formulated on the basis of 
approximate models of radiation transfer and involve 
approximate solutions to the mathematical problems 
generated, so that the data to be processed may be 
parametrized. However, representative algorithms are also 
necessary, which would permit standard computations of high 
accuracy to verify engineering, express–analysis, and routine 
techniques, so that their application ranges may be assessed to  
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a needed accuracy. Based on unified methods, we 
proposed accurate and approximate computational models 
for characteristics of solar radiation widely applicable to 
fast algorithms of radiative correction. It is recommended 
to use fast throughput techniques to obtain stable 
accurate numerical results. 

 
ACKNOWLEDGMENTS 

 
This study was financially supported by the Russian 

Fund of Fundamental Researches (Project Code 93–05– 
–08542). 

 
REFERENCES 

 
1. E.M. Feigelson and L.D. Krasnokutskaya, Fluxes of Solar 
Radiation and Clouds (Gidrometeoizdat, Leningrad, 1978), 
157 pp. 
2. J. Lenoble, Radiation Transfer in Scattering and 
Absorbing Atmospheres. Standard Computational Techniques 
(Gidrometeoizdat, Leningrad, 1990), 263 pp. 
3. I.L. Karol', ed., Radiative–Photochemical Models of 
the Atmosphere (Gidrometeoizdat, Leningrad, 1986), 
192 pp. 
4. G.I. Marchuk, Computational Techniques for Nuclear 
Reactors (Atomizdat, Moscow, 1961), 668 pp. 
5. V.S. Vladimirov, Mathematical Problems of the 
Theory of Transfer for Monovelocity Particles (Izdat. of 
AN SSSR, Moscow, 1961), 158 pp. 
6. I.A. Adamskaya, Zh. Vychisl. Mat. Mat. Fiz. 3, No. 5, 
927–941 (1963). 
7. V.V. Smelov, Lectures in Neutron Transfer Theory 
(Atomizdat, Moscow, 1978), 216 pp. 
8. U.M. Sultangazin, Techniques of Spherical Harmonics and 
Discrete Coordinates in Problems of the Kinetic Theory of 
Transfer (Nauka, Alma–Ata, 1979), 267 pp. 

9. 
′
E.P. Zege, "On the two stream approximation in the 

theory of radiation transfer", Preprint, Institute of Physics of 
the Byeloruss Academy of Sciences, Minsk (1971), 58 pp. 
10. V.V. Sobolev, Radiative Energy Transfer in Stellar and 
Planetary Atmospheres (Gos. Izdat. of Technico–Teor. Lit., 
Moscow, 1956), 391 pp. 
11. V.V. Sobolev, Light Scattering in Planetary Atmospheres 
(Nauka, Moscow, 1972), 336 pp. 
12. T.A. Sushkevich, E.M. Petrokovets, S.V. Maksakova, 
and O.S.Kurdjukova, “Analitical solutions of the 
equation of transfer for an plane–parallel layer in 
Sobolev approximation", Preprint No. 56, Institute of 
Applied Mathematics of the Russian Academy of Sciences, 
Moscow (1992), 32 pp. 
13. T.A. Sushkevich, E.M. Petrokovets, S.V. Maksakova, 
and O.S. Kurdjukova, "Analitical solutions of the 
equation of transfer for an inhomogeneous plane–
parallel layer in Sobolev approximation", Preprint 
No. 64, Moscow Institute of Applied Mathematics of the 
Russian Academy of Sciences, Moscow (1992), 28 pp. 
14. E.P. Shettle and J.A. Weinman, J. Atm. Sci. 27, 
1048–1055 (1970). 
15. J.H. Joseph and W.J. Wiscombe, and J.A. Weinman, J. 
Atm. Sci. 32, No. 12, 2452–2459 (1976). 

16.
′
E.P.Zege, A.P.Ivanov, and I.L.Katsev, Image Transfer in a 

Scattering Medium (Nauka i Tekhnika, Minsk, 1958), 327 pp. 
17. V.Ya. Gol'din, Zh. Vychisl. Mat. Mat. Fiz. 4, No. 6, 
1078–1087 (1964). 
18. T.A.Germogenova and T.A. Sushkevich, Problems on 
Physics of Reactor Protection, No. 3, 34–46 (1969). 
19. T.A. Sushkevich, S.A. Strelkov, and A.A. Ioltukhovskii, 
Technique of Characteristics in Problems of Atmospheric 
Optics (Nauka, Moscow, 1990), 296 pp. 
20. T.A. Sushkevich, E.I. Ignat'eva, and S.V. Maksakova, 
"Generalized computational model for densities and fluxes of 
solar radiation," Preprint No. 9, Institute of Applied 
Mathematics of the Russian Academy of Sciences, Moscow 
(1993), 32 pp. 
21. T.A. Sushkevich, E.I. Ignat'eva, and S.V. Maksakova, 
"Linear and nonlinear computational models for densities 
and fluxes of solar radiation", Preprint No. 23, Institute of 
Applied Mathematics of the Russian Academy of Sciences, 
Moscow (1993), 32 pp. 
22. T.A. Sushkevich, E.I. Ignat'eva, and S.V. Maksakova, 
"On the boundary conditions in computational models for 
densities and fluxes of solar radiation", Preprint No. 31, 
Institute of Applied Mathematics of the Russian Academy of 
Sciences, Moscow, (1993), 32 pp. 
23. T.A. Sushkevich, E.I. Ignat'eva, and S.V. Maksakova, 
"Discrete computational algorithms for horizontal fluxes of 
solar radiation in Sobolev approximation", Preprint No. 37, 
Institute of Applied Mathematics of the Russian Academy 
Sciences, Moscow,(1993). 
24. T.A. Sushkevich, E.I. Ignat'eva, and S.V. Maksakova, 
"Homogeneous conservative differential computational 
schemes for densities and fluxes of solar radiation in the 
approximation of the equation of diffusion", Preprint 
No. 38, Institute of Applied Mathematics of the Russian 
Academy of Sciences, Moscow (1993), 28 pp. 
25. T.A. Sushkevich, E.I. Ignat'eva, and S.V. Maksakova, 
"Homogeneous conservative computational schemes for 
densities and fluxes of solar radiation from a system of 
differential equations," Preprint No. 51, Institute of Applied 
Mathematics of the Russian Academy of Sciences, Moscow 
(1993), 28 pp. 
26. T.A. Sushkevich, E.I. Ignat'eva, and S.V. Maksakova, 
“Homogeneous conservative computational schemes for 
hemispherical densities and fluxes of solar radiation from a 
system of differential equations", Preprint No. 52, Institute 
of Applied Mathematics of the Russian Academy of Sciences, 
Moscow (1993), 28 pp. 
27. S.K. Godunov and V.S. Ryaben'kii, Differential Schemes 
(Nauka, Moscow, 1973), 400 pp. 
28. A.A. Samarskii, Theory of Differential Schemes (Nauka, 
Moscow, 1983), 616 pp. 
29. E.W. Hobson, Theory of Spherical and Ellipsoidal 
Functions (Foreign Literature Press, Moscow, 1952), 476 pp. 
30. E.S. Kuznetsov, Zh. Vychisl. Mat. Mat. Fiz. 6, No. 4, 
769–772 (1966). 
31. E.S. Kuznetsov, Dokl. Akad. Nauk SSSR 37, No. 7–8, 
237–244 (1942). 
32. V.S. Vladimirov, Dokl. Akad. Nauk SSSR 135, No. 5, 
1091–1094 (1960). 
33. R.E. Marshak, Phys. Rev. 71, 443–446 (1947). 
 

 


