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Monte Carlo algorithms of calculating the mathematical expectation and the 
variance of solar reflected intensity in a given direction, developed for a Poissonian 
model of broken cloudiness, are extended to the case of a three-layer cloudy-aerosol 
atmosphere located over a Lambertian reflecting underlying surface. 

 
1. INTRODUCTION 

 
The radiation regime and brightness field of the system 

"atmosphere–underlying surface" are controlled strongly by 
the variety of forms and strong space–time variability of 
cloud cover. The spatial and angular structure of radiation 
fields of cloudy atmosphere, together with their sensitivity 
to cloud characteristics variations, provides an important 
information needed for remote optical sensing of the cloudy 
atmosphere1,2 and underlying surface, for satellite 
meteorology, as well as for the reconstrudtion of albedo of 
the system "atmosphere–underlying surface" from a satellite 
measurements.3,4 Most often in theoretical studies this 
problem is presently treated via solving the transfer 
equation in a plane–parallel horizontally homogeneous 
cloud layer covering partially or completely the sky. 
However, this simplest model disregards an important 
factors connected with the stochastic geometry of real 
clouds (irregular and odd shapes, amount, extents, and 
location of individual clouds) and being of great importance 
for radiative budget and brightness field formation in 
cloudy atmosphere. 

The presence of drawbacks we outlined above, as well 
as a variety of unsolved problems connected, e.g., with the 
interpreting satellite data,5 all these have recently 
stimulated the development of radiative transfer theory in 
stochastic scattering media (see, e.g., Refs. 6–9). Authors 
of Ref. 10 have treated numerically the angular dependence 
of reflected solar radiation and first evaluated the effect of 
random geometry of cloud fields on formation of the mean 
angular distributions of reflected and transmitted solar 
radiance. However, the numerical method used by the 
authors allows the computation of histograms of the mean 
intensity, but not the mean intensity in a given direction. A 
finer angular structure of scattered light can be determined 
using the equations for intensity moments together with 
appropriate Monte Carlo algorithms.11–14 In Refs. 11–14 no 
account is taken of the impact of aerosol and underlying 
surface on radiative transfer, with results far from 
exhaustive.  

In the present paper, the algorithms for calculation of 
the statistical characteristics of solar radiation intensity in a 
given direction are extended to the case of a three–layer 
aerosol–cloudy atmosphere over reflecting underlying surface. 

 
2. MODEL OF ATMOSPHERE 

 
Let us consider an atmospheric model as consisting of 

three layers: cloudy (Λ) and above– (Λ
2
) and under–cloud 

(Λ
1
) aerosol layers over a Lambertian reflecting underlying 

surface. The horizontally homogeneous aerosol layers are 
characterized by the optical thicknesses τa, 2

 and τa, 1
, single 

scattering albedos λa, 2
 and λa, 1

, and a common, altitude–

independent scattering phase function ga(ω, ω′), with 

ω = (a, b, c) the unit vector of direction. The optical model 
of broken cloudiness is defined in the layer Λ as random 
scalar fields of extinction coefficient σκ(r), single scattering 
albedo λκ(r), and scattering phase function g(ω, ω′) κ(r), 
where κ(r) is the indicator function of the random set 
G ⊂ Λ where the cloud matter occurs. The mathematical 
model of broken cloudiness is generated by the Poisson 
point fluxes on straight lines.11 The model input is cloud 
fraction p, cloud thickness ΔH = H – h, and horizontal size 
D, determining the correlation function of cloud field. 

 
3. MONTE CARLO ALGORITHM OF COMPUTING  

THE MEAN INTENSITY 
 
The structure of brightness fields in broken clouds is 

influenced by the processes of scattering and absorption 
occurring in beyond–cloud atmosphere and on the 
underlying surface. This influence should be accounted for 
in algorithms of computing the statistical characteristics of 
intensity of diffuse solar radiation. Suppose for definiteness 
that we need to determine the mean intensity of reflected 
solar radiation <I(Ha, ω)> in the plane z = Ha and in 

direction ω, with Ha the top of the atmosphere. The mean 

intensity of reflected solar radiation can be written as 
 

<I(Ha, ω)> = Ta, 2
(ω) <I(H, ω)> + ia, 2

(Ha, ω) . (1) 
 

where ia, 2
(Ha, ω) is the solar intensity reflected by the 

above–cloud aerosol atmosphere, 

Ta, 2
(ω) = exp 

⎩
⎨
⎧

⎭
⎬
⎫

– σa, 2
 
Ha – H

c  is the transmission of the 

layer Λ
2
 in direction ω, 

<I(H, ω)> = <i(H, ω)> + <jd(H, ω)> is the mean intensity 

of upward (c > 0) solar radiation at cloud top; <i(H, ω)> 
has the meaning of being the mean intensity formed by 
scattering in clouds, while <jd(H, ω)> can be interpreted as 

the mean intensity of radiation scattered in the under–cloud 
atmosphere and (or) reflected from the underlying surface 
and then passed through the cloud layer without scattering. 
As far as ia, 2

(Ha, ω) is trivially calculated (knowing the 
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amount of radiant energy coming to Λ
2
 from the cloud 

top) by standard algorithms (see, for example, Ref. 15), 
we at once address ourselves to the radiative transfer in 
the layer of broken clouds. From the linearity of radiative 
transfer equation it follows that the inclusion of the 
above– and under–cloud atmosphere as well as 
underlying surface simply changes the boundary 
conditions in solving the system of equations for the mean 
solar intensity within the cloud layer Λ. For this reason, 
we can at once write the solution for the mean intensity 
<I(H, ω)> = <i(H, ω)> + <jd(H, ω)> and the function 

(H, ω) = <κ(rH) I(rH, ω)>/p = u(H, ω) + vd(H, ω) 

which is used below to treat the correlation function. The 
angular brackets indicate the ensemble averages over the 
cloud field realizations, rH ∈ z = H. The derivation of the 

system of equations for the mean intensity and correlation 
function of intensity and the algorithms for solving these 
equations are discussed adequately in Refs. 11–14. 

From Refs. 11 and 12 we have  
 

<I(H, ω)> = 
λ

2π c ⌡
⌠

Ez

 

 ∑
i=1

2

 Di exp ( )– λi 
H – ξ

c  dξ × 

× ⌡
⌠

4π

 

 
g(μ) f(ξ, ω′) dω′ + <jd(H, ω)>; (2) 

 

U(H, ω) = 
λ

2πσ p c
 ⌡
⌠

Ez

 

 ∑
i=1

2

 Di λi exp ( )– λi 
H – ξ

c  dξ × 

× ⌡
⌠

4π

 

 
g(μ) f(ξ, ω′) dω′ + vd(H, ω); (3) 

 

<jd(H, ω)> = Sd(h, ω) ∑
i=1

2

 Ci exp ( )– λi 
H – h

c ; (4) 

 

vd(H, ω)

 

= Sd(h, ω) ∑
i=1

2

 Di exp ( )– λi 
H – h

c , (5) 

 

where Sd(h, ω) is the intensity of diffuse radiation incident 

upon the lower boundary of cloud layer (diffuse source). 
We note that Sd(h, ω) is a priori unknown, but it is readily 

determined in solving the problem of radiative transfer by 
Monte Carlo method: 
 

Ez = (h, H) ; λ
1,2

 = 
σ + A(ω)

2  å 
(σ + A(ω))2 – 4 A(ω) p σ

2  ,  

 

C
1
 = 

λ
2
 – σ p

λ
2
 – λ

1

 , C
2
 = 1 – C

1
, D

1
 = 

λ
2
 – σ 

λ
2
 – λ

1

 , D
2
 = 1 – D

1
,  

 

A(ω) = A × (⏐a⏐ + ⏐b⏐), A = (1.65 (p – 0.5)2 + 1.04)/D,  
 

for spherical particles   
 

g(ω, ω′) = g(μ)/2 π, μ = ω′ (rH – r′)/⏐rH – r′⏐. 
 

The function f(x) = σ<κ(r)I(r, ω)> has the meaning of 
the mean collision density, and it is the solution of integral 
equation 
 

f(x) = ⌡⌠
X

 k(x′, x) f(x′) dx′ + ψ
∼
(x) (6) 

 

with kernel 
 

k(x′, x) = 

λg(μ) ∑
i=1

2

 Di λi exp{– λi ⏐r – r′⏐}

2π ⏐r – r′⏐2  δ( )ω – 

r – r′
⏐r – r′⏐ (7) 

 

and free term  
 

ψ
∼
(x) = Sd(xz) ψ(x) = Sd(xz) ∑

i=1

2

 Ci λi exp {– λi ⏐r – rz⏐}, (8) 

 

where X is the phase space of coordinates and directions, 
x = (r, ω), and Sd(xz) is the intensity of diffuse radiation 

incident on the cloud upper and lower boundaries, 
xz = (rz, ω), rz ∈ z = h for c > 0, rz ∈ z = H for c < 0. 

We now address ourselves to Monte Carlo 
computations of linear functionals of the type 
 

Jh = (f, h) = ⌡⌠
X

 f(x) h(x) dx, (9) 

 
in particular, <i(H, ω)> is such a functional. In the space 
L

1
 the kernel (7) satisfies CKC ≤ λ ≤ 1 and CK 

2C < 1 for a 

finite medium, so the Neumann series converges for Eq. 
(6). This establishes the existence, uniqueness, and 
positivity of the solution of Eq. (3), and we therefore can 
apply the Monte Carlo method to estimate the linear 
functionals of the type (9). 

Let us consider the Monte Carlo algorithm of 
calculating the functional Jh. The Markov chain is 

determined by initial ψ(x) and transition k(x′, x)/λ 
probabilities (k(x′, x) is the substochastic kernel). To 
calculate Jh, we have  

 

Jh = (f, h) = ⌡⌠
X

 f(x) h(x) dx = M ∑
n=0

N
1

 Qn h(x), (10) 

 

where M is the mathematical expectation over the 
ensemble of trajectories, N

1
 is the random number of the 

last state of the Markov chain, and the auxiliary weights 
Qn are calculated from formulas Q

0
 = Sd(xz),  

Qn = λQn–1
. According to Eqs. (2) and (3) the mean 

specific intensity <i(H, ω)> and the function u(H, ω) can 
be calculated if in Eq. (10) one assumes  
 

hi(xn) =

⎩
⎨
⎧

 

g(μn)

2π c ∑
i=1

2
 Diexp

⎩
⎨
⎧

⎭
⎬
⎫

– λi

H – zn

c , c(H – zn) > 0,

0, c(H – zn) < 0.
 (11) 

 

hu(xn)=

⎩
⎨
⎧

 

g(μn)

2πσp c ∑
i=1

2
 Diλiexp

⎩
⎨
⎧

⎭
⎬
⎫

–λi

H – zn

c , c(H – zn)> 0,

0, c(H – zn)< 0,
 (12) 

 

where μn = (ωn⋅ω). 



E.I. Kas'yanov and G.A. Titov Vol. 7,  No. 9 /September  1994/ Atmos. Oceanic Opt.  631 
 

 

 
 

FIG. 1. A schematic illustration of a three-layer model of 
cloudy atmosphere and a photon trajectory; the open 
circles show the contributions to mean intensity 
<I(Ha, ω)> from above– and under–cloud atmosphere, 

broken clouds, and underlying surface. 
 

The functions <I(Ha, ω)> and U(Ha, ω) are calculated 

at the top of the atmosphere as follows. In the layers Λi, 

i = 1, 2, as well as at reflection from the underlying 
surface, the photon trajectories are simulated using the 
standard algorithms.15 In the cloud layer, the trajectories 
are simulated with the algorithms described above. The 
expressions (11) and (12) for calculating the functions 
<I(Ha, ω)> (see Eq. (1)) and U(Ha, ω) are of the following 

form. 
1. Collision in the above–cloud atmosphere (Fig. 1, 

layer Λ
2
, point x

1
 =

 
(r

1
, ω

1
)): 

 

hi(xn) = 
ga(μn)

2π c  exp 
⎩
⎨
⎧

⎭
⎬
⎫

– σa, 2
 
Ha – zn

c  . (13) 

 

The function U(Ha, ω) is estimated by setting 

hu(xn) = hi(xn). 

2. Collision in the clouds (Fig. 1, layer Λ, point 
x

2
 = (r

2
,
 
ω

2
)): 

 

hi(xn) = 

ga(μn)

2π c ∑
i=1

2

 Di exp
⎩
⎨
⎧

⎭
⎬
⎫

– λi 

H – zn

c  exp
⎩
⎨
⎧

⎭
⎬
⎫

– σa, 2 

Ha – H

c ; (14) 

 

hu(xn) = 

g(μn)

2πσ p c∑
i=1

2

 Di λi exp
⎩
⎨
⎧

⎭
⎬
⎫

– λi 
H – zn

c  exp
⎩
⎨
⎧

⎭
⎬
⎫

– σa, 2 
Ha – H

c  

 

3. Collision in the under–cloud atmosphere (Fig. 1, 
layer Λ

1
, point x

3
 =

 
(r

3
, ω

3
)): 

 

hi(xn) = 
ga(μn)

2π c  ∑
i=1

2

 Ci exp { }– λi 
H – h

c  × 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

– σa, 1 
h – zn

c  – σa, 2 
Ha – H

c  ;  

  (15) 

hu(xn) = 
ga(μn)

2π c  ∑
i=1

2

 Di exp { }– λi 
H – h

c  × 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

– σa, 1 
h – zn

c  – σa, 2 
Ha – H

c  . 
 

4. At reflection from the underlying surface (Fig. 1, 
point x

4
 = (r

4
, ω

4
)), the particle auxiliary weights are 

multiplied by As/2 π, and the estimates become 
 

hi(xn)=2∑
i=1

2

 Ciexp{ }–λi 
H – h

c exp
⎩
⎨
⎧

⎭
⎬
⎫

–σa,1
 
h
c – σa,2

 
Ha – H

c ; 

  (16) 

hu(xn) =2∑
i=1

2

 Di exp{ }–λi 
H – h

c exp
⎩
⎨
⎧

⎭
⎬
⎫

–σa,1 
h
c – σa,2 

Ha – H

c . 

 
4. MONTE CARLO ALGORITHM OF CALCULATING  

THE CORRELATION FUNCTION 
 
Let us have a receiver with the spatial field–of–

view angle ΔΩ = 2π(1 – cosα). The receiver is located at 

the point R = (x
∧

, y
∧

, Hr) (see Fig. 2) and measures the 

quantity 
 

F
mes

(R) = ⌡⌠
ΔΩ

 I(R, ω) dω . (17) 

 

We need to determine the correlation function 
 

KF 
(R

1
, R

2
) = <F

mes
(R

1
) F

mes
(R

2
)> = 

 

= ⌡⌠
ΔΩ

 dω
1
 ⌡⌠
ΔΩ

 <I(R
1
, ω

1
) I(R

2
, ω

2
)> dω

2
. (18) 

 

For R
1
 = R

2
, the equation (18) yields the variance 

 

DF 
(R) = <F

 
2
mes

(R)> = ⌡⌠
ΔΩ

 dω
1
 ⌡⌠
ΔΩ

 <I(R, ω
1
) I(R, ω

2
)> dω

2
. (19) 

 

 
 

FIG. 2. Scheme illustrating the model geometry. 
 

Let us consider the calculation of the variance and 
correlation function of solar radiation in a three–layer 
atmospheric model, bounded at its bottom by the 
underlying surface. Consider first the effect of the above–
cloud atmosphere (layer Λ

2
). The layer Λ

2
 is optically 

thin (for the background model τa, 2
 < 1), so that the 

radiation escaping through the cloud top can be assumed 
to propagate unscattered in the layer. Then the random 
intensity of solar radiation can be written as  

 

I(R
1
, ω) = Ta, 2

(ω) I(r
1
, ω) + i

∼
a, 2

(R
1
, ω). (20) 
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Here i
∼

a, 2
(R

1
, ω) has the meaning of intensity of the 

diffuse solar radiation scattered by the above–cloud 
atmosphere when the upper boundary of the layer Λ

2
 is 

only illuminated. In the approximation considered, the 

transmission Ta, 2
 and the intensity i

∼
a, 2

(R
1
, ω) are both 

nonrandom functions. With this in mind, putting (20) in 
(18) we obtain 
 

KF 
(R

1
, R

2
) = ⌡⌠

ΔΩ

 ⌡⌠
ΔΩ

 <[Ta, 2
(ω

1
) I(r

1
, ω

1
) + i

∼
a, 2

(R
1
, ω

1
)] × 

 

× [Ta, 2
(ω

2
) I(r

2
, ω

2
) + i

∼
a, 2

(R
2
, ω

2
)]> dω

1
 dω

2
 = 

 

= ⌡⌠
ΔΩ

 ⌡⌠
ΔΩ

 {Ta, 2
(ω

1
) Ta, 2

(ω
2
) <I(r

1
, ω

1
) I(r

2
, ω

2
)> + 

 

+ Ta, 2
(ω

1
) < I(r

1
, ω

1
) > i

∼
a, 2

(R
2
, ω

2
) + i

∼
a, 2

(R
1
, ω

1
) × 

 

×Ta, 2(ω2
) < I(r

2
, ω

2
) >+ i

∼
a, 2(R1

, ω
1
)i
∼
a, 2(R2

, ω
2
)} dω

1
 dω

2
. (21) 

 

The calculation of the last three terms in formula (21) 
presents no serious difficulties, and it is done using the 
presented above algorithms of calculating the mean 
intensity. Let us consider in more detail the calculation of 
the first term. 

As was noted above in treating the mean intensity, the 
upward radiation scattered by the under–cloud atmosphere 
and (or) reflected by the underlying surface can be 
interpreted as a source of diffuse radiation; this determines 
the boundary conditions at cloud base, and the intensities 
I(rn, ωn), n = 1, 2 can be written as 
 

I(rn, ωn) = i(rn, ωn) + jd(rn, ωn). (22) 
 

According to Eq. (22), for the first term of Eq. (21) we 
have 
 

⌡⌠
ΔΩ

 ⌡⌠
ΔΩ

 Ta, 2
(ω

1
) Ta, 2

(ω
2
) {< i(r

1
, ω

1
) i(r

2
, ω

2
) > + 

 

+ < jd(r1, ω1
) i(r

2
, ω

2
) > + < i(r

1
, ω

1
) jd(r2, ω2

) > + 
 

+ < jd(r1, ω1
) jd(r2, ω2

) > } dω
1
 dω

2
. (23) 

 

From Eq. (23) it follows that the calculation of KF 
(R

1
, R

2
) 

requires the knowledge of the correlation functions 
<i(x

1
) i(x

2
)>, <i(x

1
) jd(x2

)>, <jd(x1
) i(x

2
)>, and 

<jd(x1
) jd(x2

)>. These in turn are calculated as follows.13,14  

Correlation <i(x
1
) i(x

2
)>: 

 

<i(x
1
) i(x

2
)> = <i(H, ω

1
)> <i(H, ω

2
)> + 

+ [u(H, ω
2
) – <i(H, ω

2
)>] M ∑

n=0

N
1

 Qn hn(xn, x1
) × 

× exp (– Ax Δ x
0
 – Ay Δ y

0
), (24) 

 

where hn(xn, x1
) is determined from the formula (11);  

 

Δx
0

 =⏐x
0

 – x
2
⏐; Δy

0
 =⏐y

0
 – y

2
⏐; r

0
 = (x

0
, y

0
, z

0
) = r

1
 + 

z
0
 – H

c
1

 ω
1
 

 

is the point of initial collision in the cloud layer (Fig. 2). 
Correlation <jd(x1

) i(x
2
)> 

<jd(x1
) i(x

2
)> =

 
< jd(H, ω

1
) > < i(H, ω

2
)> + 

 

+ [Sd(h, ω
1
) – < jd(H, ω

1
) > ] [u(H, ω

2
) – < i(H, ω

2
) > ] × 

 

× exp {– Ax Δ x
0
 – Ay Δ y

0
}. (25) 

 

Correlation <i(x
1
) jd(x2

)> 

< i(x
1
) jd(x2

) > =
 
< i(H, ω

1
) > <jd(H, ω

2
)> + 

 

+ [vd(H, ω
2
) – < jd(H, ω

2
) >] M ∑

n=0

N1

 Qn hi(xn, x1
) × 

 

× exp {– Ax Δ x
0
 – Ay Δ y

0
} . (26) 

 

Correlation < jd(x1
) j(x

2
) >. To treat the space–angle 

correlation function < jd(r1, ω1
) jd(r2, ω2

) >, closed 

equations16 have been obtained which depend on the 
location of points ri and on directions ωi, i = 1, 2. These 

equations are readily solved, e.g., through the Laplace 
transform; however, the ultimate formulas are very intricate 
and then not given here. 

To calculate the variance (19), it is necessary to 
integrate the expressions (24)–(26) and the formula for 
<jd(r1

, ω
1
) jd(r2

, ω
2
)> over the receiver spatial field–of–

view angle ΔΩ. The integration over a large spatial angles 
ΔΩ is computationally expensive. The situation 
significantly simplifies in a particular, but a very 
important case of receiver with a small field of view. The 
point is that all terms in formulas (24)–(23) and in 
expression for <jd(r1

, ω
1
) jd(r2

, ω
2
)>, describing different 

components of the mean intensity, are smooth functions 
which vary slightly with the small changes of viewing 
angle.12,13,16 Therefore, without a significant loss in 
accuracy, these functions can be treated as constants 
within a small spatial angle ΔΩ and hence can be removed 
from the integral over ΔΩ. We denote the direction of the 
receiver optical axis by –ωr (see Fig. 2). Then, for the 

correlation function (24) we obtain 
 

K(r
1
, r

2
) = < i(H, ωr) >

2 (ΔΩ)2 + 
 

+ [u(H, ωr) – < i(H, ωr) >] M ∑
n=0

N
1

 Qn hi(xn, x1
) J(Δ x

∧

, Δy
∧

), (27) 

 

where 
 

J(Δ x
∧

, Δy
∧

) = ⌡⌠
ΔΩ

 dω
1
 ⌡⌠
ΔΩ

 exp {– Ax Δ x
0
 – Ay Δ y

0
} dω

2
; (28) 

 

Δ x
0
 = Δx

∧

 + (Hr – H)
⎝
⎛

⎠
⎞a

2

c
2

 – 
a

1

c
1

– 
a

1

c
1

 (H – z
0
) ;

Δ y
0
 = Δy

∧

 + (Hr – H)
⎝
⎛

⎠
⎞b

2

c
2

 – 
b

1

c
1

– 
b

1

c
1

 (H – z
0
) ;

 (29) 

 

If the receiver is located on a high–flying aircraft or 

satellite, then (Hr – H) > H – z
0
 and hence the last terms 

in Eq. (29) can be neglected. Expression (24) then becomes 
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K(r
1
, r

2
) = < i(H, ωr) >

2 (ΔΩ)2 + [u(H, ωr) – 
 

– < i(H,
 
ωr) >] < i(H, ωr) > J(Δx

∧

, Δy
∧

) , (26′) 
 

where J(Δx
∧

, Δy
∧

) is calculated from Eq. (28) taking  
 

Δx
0
 = Δx

∧

 + (Hr – H) 
⎝
⎛

⎠
⎞a

2

c
2

 – 
a

1

c
1

 ,  

  (29′) 
 

Δy
0
 = Δy

∧

 + (Hr – H) 
⎝
⎛

⎠
⎞b

2

c
2

 – 
b

1

c
1

 .  

 

The integral (28) is calculated by the Monte Carlo 
method. Clearly, the discussed above simplification can 
also be used to integrate over the angle of receiver field 
of view the other three correlations < i(x

1
) jd(x2

) >, 

< jd(x1
) i(x

2
) >, < jd(x1

) jd(x2
) > (the three last terms in 

formula (23)). 
Thus, the Monte Carlo algorithms are developed for 

calculating the mathematical expectation and the variance 
of intensity of reflected solar radiation in a three–layer 
cloudy–aerosol atmosphere over the Lambertian reflecting 
underlying surface. A notable feature of the algorithms is 
their capability of calculating the statistical 
characteristics of intensity in a given direction, thus 
capturing rather fine features in angular structure of 
scattered light. 
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