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In this paper we discuss the influence of the refraction on the geometry of 
monostatic and bistatic acoustic sounding of the atmosphere. The relations between the 
geometry parameters and the profiles of atmospheric temperature and wind velocity 
were derived using linear approximation of geometric acoustics for an inhomogeneous 
moving medium. Some results of model calculations made using these relations and 
numerical estimates of their accuracy characteristics can also be found in the paper. 

 
The regular refraction caused by vertical 

inhomogeneity of wind velocity v and air temperature T 
fields affects strongly sound propagation in the atmosphere. 
During acoustic sounding it results in variations of different 
geometric parameters such as the scattering volume center 
coordinates r ′Q(x ′Q, y ′Q, z ′Q), angles of sound scattering θ and 

its arrival to the receiving antenna α
r
 and β

r
 (in two 

orthogonal planes), and the path length S of sound 
propagation from the transmitting antenna to r ′Q and back 

to the receiving one. 
The practice demands a simple analytic relations which 

could readily and sufficiently accurately assess the 
refraction variations in the aforementioned parameters with 
the known profiles of v and T. This can be explained by the 
fact that the refraction variations in the sounding geometry 
lead to variations in power and frequency of scattered signal 
measured in the experiment. As a result, some additional 
systematic errors appear when the atmospheric parameters 
profiles are reconstructed from the acoustic radar (AR) 
data. The foregoing relations allow developing an 
engineering procedure for taking account of these errors. 

It is reasonable that the efforts to derive such relations 
have been already made. The formulas for refraction 
displacements Δx ′

Q and Δz ′Q of the scattering volume center 

in a single horizontal and vertical plane for both monostatic 
and bistatic sounding are given in Refs. 2 and 3. Here too 
the refraction formula for the angle of scattered sound 
arrival has been obtained for slant monostatic sounding. 
These formulas were derived based on the approximate 
expression for a curvature radius of acoustic beam in the 
atmosphere borrowed from Ref. 4 where it was obtained 
with an accuracy to the terms of the order of ν/c

0
 and 

⏐Δc⏐/c
0
 (Δc = c – c

0
 is the deviation of sonic velocity in 

air from its value c
0
). In this case, a double curvature of 

acoustic beam in wind (the beam does not lie in a single 
plane) and angular differences between the directions of the 
normal to the phase wave front n and the unit vector s 
tangent to the beam were not taken into account. It is 
known5 that such assumptions lead to errors comparable in 
magnitude to the terms of the order of ν/c

0
. 

In Ref. 6 the effort was undertaken to make the 
results2,3 more accurate by introducing angular corrections 
for difference between n and s in the final formulas. 
Moreover, since in Refs. 2 and 3 the problem was solved for 
the simplest case of linear altitude profiles of c and v

x 

(projection of v onto the x axis), in Ref. 6 the authors  

proposed the method of applying these formulas for more 
complicated stratifications of the atmosphere too. It 
consisted in dividing the atmosphere into individual layers 
distinguishing by the altitude. The gradients of c and v

x in 

each of these layers were assumed constant. The refraction 
problems in Refs. 7–9 were also solved by linearizing the 
integral equation of acoustic beam for an inhomogeneous 
moving medium with respect to the values ν/c

0
 and 

⏐Δc⏐/c
0
. It was found that this approach enabled the 

refraction formulas with arbitrary altitude profiles of v and 
c (or T) to be obtained. In Refs. 7–9 the formula for Δz ′

Q 

for slant monostatic sounding,7 the expression for the angle 
α

r
 for vertical monostatic sounding,8 and the expression for 

the angle and time of the scattered signal arrival for bistatic 
sounding9 were obtained. 

In this paper we used a similar method for solving the 
refraction problems. It was proposed to derive the refraction 
formulas for the entire set of parameters of the acoustic 
sounding geometry both monostatic and bistatic which 
could be valid for different orientations of polar diagrams 
(PDs) of antennas and altitude profiles of v and T. Because 
of cumbersome intermediate computations, only initial 
equations and final formulas are represented below. At the 
same time as the derivation of the formulas, the numerical 
computer solution of the same refraction problems was made 
based on accurate equations of geometric acoustics for 
different sounding geometries and types of atmospheric 
stratification. It enabled us, first, to find and then exclude 
errors in deriving the final formulas and, second, to assess 
numerically the accuracy characteristics of these formulas. 
The numerical results are given below only for a single 
atmospheric stratification which is the most typical. Since 
the time of signal propagation along the path τ is more 
important in practice than path geometric length S, the 
acoustic analog of S is considered here rather than S. 

 
SYSTEM OF BEAM EQUATIONS FOR ACOUSTIC 

SOUNDING OF THE ATMOSPHERE AND 
METHODOLOGY OF ITS SOLUTION 

 
Let the transmitting and receiving AR antennas spaced 

for a distance d horizontally form a bistatic channel for 
sounding the atmosphere with the help of their PDs. 
Monostatic sounding is treated here as a particular case of 
sounding for d = 0, unless otherwise indicated. Due to 
finite width of antennas PDs inside this channel it is 
possible to indicate many beam paths of AR signal  
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propagation. Each of these paths contains upward (a direct 
wave) and downward (a scattered wave) beams which have 
a point of sound scattering r′(x′, y′, z′) common for a given 
pair of the beams. 

The condition of intersection at a point r′ of the 
incident and scattered beams whose parameters are denoted 
as "t" and "r", respectively, can be formulated as 

 

R(ξ
t
, ν

t
, z′) = R(ξ

r
, ν

r
, z′) , (1) 

τ = τ(ξ
t
, ν

t
, z′) + τ(ξ

r
, ν

r
, z′) , (2) 

 

where R(ξ, ν, z) = i x(ξ, ν, z) + j y(ξ, ν, z) is the radius–
vector describing the horizontal position of a beam point 
assigned by the beam parameters ξ and ν with the vertical 
coordinate z, and τ(ξ, ν, z) is the time of sound propagation 
along a segment of the same beam with boundary points 
existing at altitudes z

0
 (the level of AR antenna aperture 

over the Earth′s surface) and z. The values ν
t, r

 are the 

angles of azimuthal orientations of normals to the wave 
front n

t, r
(z

0
) at the points of transmission and reception of 

the sound, and ξ
t, r

 are the tilt angles of these normals in a 

vertical plane with respect to horizon (0 < ξ
t 

≤ π/2 and  

–π/2 ≤ ξ
r 

< 0). 

To solve the system of equations (1)–(2) with respect 
to any characteristics of the beam pair under study, one 
should specify a type of the functions R(ξ, ν, z) and 
τ(ξ, ν, z). For a stratified moving medium they are familiar 
(see, e.g., Ref. 5). Taking them into account it is possible 
to write 

 
R

t, r
( z′) = R(ξ

t, r
, ν

t, r
, z′) and τ

t, r
( z′) = τ(ξ

t, r
, ν

t, r
, z′): 

 

R
t, r

( z′) = { d i}
r
 + ⌡⌠

 z
0

z′

 (c( z) κ
t, r

 cos ξ
t, r

 + 

+
 
[c( z) A

t, r
( z) – νz( z) χ

t, r
( z)] v

h
( z)/B( z)) / χ

t, r
(z) d z, (3) 

 

τ
t, r

(z′) = ⌡⌠
 z

0

z′

 
c( z) A

t, r
( z) – νz( z) χ

t, r
( z)

B( z) χ
t, r

( z)  d z , (4) 

 
where A

t, r
(z) = W

t, r
(z

0
) – v

h
(z) κ

t, r
 cos ξ

t, r 
; 

B(z) = c2(z) – νz
2(z); χ

t, r
(z) = ± A

t
2
,r
(z) – B(z) cos2 ξ

t, r
 ; 

κ
t, r

 = i cos ν
t, r

 + j sin ν
t, r

 . 

The relations (3) and (4) for the given medium type are 
accurate. The only restriction imposed on their applicability is 
a requirement for a short wavelength as compared to a 
characteristic scale of variations of mean values describing the 
medium state (c and v). The integrands in them, as compared 
to the original form in Ref. 5, are normalized for the same 
constant ω/W

t, r
(z

0
) in the numerator and denominator, where 

ω is the circular frequency of sound vibrations; 
W

t, r 
= c + v

h 
κ
t, r

 cos
 
ξ
t, r

 + vz sin 
ξ
t, r

 is the phase velocity of 

sound; and v
h
 and v

z
 are horizontal and vertical components 

of wind velocity. For this reason, in contrast to Ref. 5, in 
Eqs. (3) and (4) the vectors χ

t, r
 as well as ν

t, r
 describing 

the azimuthal directions n
t, r

(z
0
) are equal to unity by 

absolute value. Hereinafter the x axis, in the case of bistatic 
sounding, always coincides with the direction from the AR 
transmitting antenna to receiving one, and in monostatic 
sounding it coincides with the azimuthal direction of 
vertical axis deviation of the antenna, which in this case is  

unique. When two arithmetic signs are used simultaneously, 
the upper sign is related to the first index "t" and the lower 
one to the second index. The term in braces with the index 
"r" is related to the expression describing the scattered 
beam only. 

The AR antennas are oriented vertically or close to 
this direction. Therefore, in the experiments the angles α

r
 

and β
r
 between the normal projection n

r
(z

0
) on a planes 

y = 0 and x = 0, respectively, and the z axis are under 
control. Their values are unambiguously related to the 
angles ξ

r
 and ν

r
 via the relations: tanα

r
 = cos (ν

r
)/tanξ

r
 and 

tanβ
r
 = sin (ν

r
)/tanξ

r
 . Taking this into account it is 

expedient to introduce new angular beam characteristics 
(α

t
, β

t
) and (α

r
, β

r
) in place of (ξ

t
, ν

t
) and (ξ

r
, ν

r
). The 

system of equations (1)–(2) thus modified can be solved in 
conjunction with Eqs. (3)–(4) with respect to the three of 
the following six values: α

t
, β

t
, α

r
, β

r
, z′, and τ, if the 

remaining three values are assumed to be known. 
Two versions of the refraction problem formulation, as 

applied to AR, are possible. In the first case, the basic 
known parameter is the current time τ of signal recording 
which is counted off from the start of the sounding pulse. 
The other known parameters can be the angles α

t
 and β

t
 

with the assumption, e.g., that they coincide with the 
angles 0 ≤ α*

t
 < π/2 and 0 ≤ β*

t
 < π/2, describing the 

orientation of the transmitting antenna PD axis.* In this 
case the solution of the refraction problem reduces to 
finding the angles of scattered signal arrival α

r
(τ) and β

r
(τ) 

recorded at a given moment τ and the height of point of its 
scattering z′(τ). Then the remaining coordinates x′(τ) and 
y′(τ) can be calculated by substituting the found values 
α

r
(τ), β

r
(τ), and z′(τ) into Eq. (3). Such formulation of the 

refraction problem is used for a monostatic geometry only 
though it can also be employed in the case of d ≠ 0. 

In contrast to the first version of the refraction 
problem the second one is used only in bistatic sounding. Of 
interest in this case are the parameters of the signal arriving 
from the geometric center of the scattering volume 
corresponding to a point of actual intersection of PD axes 
of the transmitting and receiving antennas. In practice the 
antennas are set to bear on a particular point in the 
atmosphere, e.g., with the coordinates r

Q(xQ, yQ, zQ) 

without considering the effect of refraction. Here the PD 
axes of both these antennas must lie in a single plane 
possibly deflected out of vertical for an angle 
β
Q = arctan (yQ/zQ) (as a rule, βQ = 0). The refraction 

results in that the direction of the scattered wave arrival 
does not coincide with this sounding plane, i.e., the 
refraction change Δβ

r
 of the angle β

r
 is observed. For the 

same reason the coordinates of real intersection point of the 
antenna PD axes rQ′  do not coincide with rQ as well. 

Taking into account the above mentioned remarks, in the 
second version of the refraction problem the angles 
α

t
 = α*

t
, α

r
 = α*

r
 + π, and β

t
 = βQ turn out to be known, 

and from Eqs. (1) and (2) one must find the angle β
r
 and 

time τ of arrival of the signal scattered at a point r ′
Q and, 

moreover, the displacements of this point  coordinates 
Δ xQ′  = xQ′  – xQ , Δ yQ′  = yQ′  – yQ 

, and Δ zQ′  = zQ′  – zQ . 
 

   *In the atmosphere  a real PD of acoustic antenna is 

affected by wind drift of sound energy. Since this 
phenomenon is taken into account in Eqs. (3)–(4), we 
consider here PDs determined by the antenna aperture only. 
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Equations (1) and (2) do not allow determination of 
the sound scattering angle θ. Therefore, the reference system 
of equations must be supplemented by one more equation. 
The angle θ is, by definition, the angle between the 
directions of the normals n

t
 and n

r
 at an intersection point 

of incident and scattered beams. Hence, the value θ must 
satisfy the relation (0 < θ ≤ π): 

 

sin θ = |n
t
(z′)×n

r
(z′)|, (5) 

 

where × is the symbol of vector product. 
The behavior of n

t,r
 as a function of z is described by 

the law of normal refraction in geometric acoustics.5 In 
Ref. 9 this law is written as 
 

cos ξ
t
′
,r
(z) = μ

t
–1

,r
(z) cos ξ

t, r
 ; ν

t
′
,r
(z) = ν

t, r
 , (6) 

 

where μ
t, r

(z) = W
t, r

(z
0
)/W

t, r
(z). Here the angles ξ

t
′
,r
(z) 

and ν
t
′
,r
(z), as previously ξ

t, r
 and ν

t, r
 for n

t, r
(z

0
), describe 

the orientation of the normals n
t, r

 but at the altitude z ≠ z
0
. 

When calculating θ from Eq. (5) we use the resolution 
of the vectors n

t, r
(z′) into orthogonal components with 

account of Eq. (6) in the form 
 

n
t, r

(z′) = κ
t, r

 μ
t

–1
,r
(z′) cos ξ

t, r
 + k (1 – μ

t, r
–2(z′) cos2ξ

t, r
)1/2. (7) 

 

Thus, the effect of refraction on all of the sought 
geometric parameters is fully described by the system of 
equations (1), (2), and (5) with the additional use of 
relations (3), (4), and (7). 

The solution of Eqs. (1) and (2) together with (3) and 
(4) with respect to the sound arrival angles is similar to a 
standard refraction problem, i.e., pointing of the beam to a 
point with the known coordinates. It is well known that this 
problem does not possess accurate analytical solutions. This 
statement is also valid for the inverse problem of determining 
the vertical coordinate z′ with the known values ξ, ν, x′, and 
y′. Therefore, the equations of the type (3) and (4) are usually 
solved either numerically with a computer or by means of 
reduction them to simpler approximated relations. In the last 
case the expansion of accurate equations into series over the 
small parameter ε = max{ν/c

0
 , ⏐Δc⏐/c

0
} n 1 is used in 

atmospheric acoustics. 
The assumption of a smallness of ε value at altitudes to 

which acoustic sounding is carried out (≤1 km) is always 
fulfilled in the atmosphere for any real variations of the 
values c and v. The applicability limits of the beam 
equation expansion over ε with accuracy to terms of the 
order of ε1 was considered in Ref. 5. In this case, the 

relation ⏐ξ⏐ . ε was obtained which established the 
limitation on the values of angles ξ

t, r
 minimum by absolute 

value. A physical sense of this limitation is that the linear 
approximation over ε does not allow describing the beam 
near the point of its turn. In acoustic sounding the sound, 
as a rule, propagates at large angles with respect to horizon 

(⏐ξ
t, r

⏐ . ε). Therefore, to obtain the analytical solutions, 

we use the linearization of expressions (3), (4), and (7) over 
ε. In addition, we take into account that the relation 
Δc/c

0
 ≅ ΔT/(2T

0
) (Ref. 9) is fulfilled with good accuracy 

for air. Since the refraction corrections Δα
r
 and Δβ

r
 to the 

angles α
r
 and β

r
 coincide with ε by the order of magnitude, 

then the trigonometric functions entering into the reference 
equations and containing α

r
 and β

r
 are also expanded into 

series where small terms nonlinear with respect to Δα
r
 and 

Δβ
r
 do not remain. 

The main advantage of such approximated equations as 
compared to the accurate ones lies in the fact that the 
integration of nonlinear complicated functions of the 
profiles c(z) and v(z) in them over z is replaced by separate 
integration of the profiles T(z) and v(z). As a consequence, 
the relations (1)–(3) represent a system of algebraic 
equations containing the linear combinations of the 
functionals  
 

ΔT
∧

(zQ) = Δ T
–

(zQ)/(2 T
0
), Δ ν

∧

i(zQ) = Δν
–

i(zQ)/c
0
, (i = x, y, z) , 

 

where 

Δ a
–

(zQ) = 
1

(zQ – z
0
) ⌡⌠

z
0

zQ

 [a(z) – a
0
] d z , 

 

with constant coefficients which are independent on z and 
determined only by geometry of sounding. Such a system of 
equations can always be solved with respect to refraction 
displacements of geometric parameters. In this case the 
formulas are derived which are not attached to any type of 
atmospheric stratification. If necessary, they can be reduced 
to a more specific form with preliminary calculation of the 

values Δ T
∧

(zQ) and Δ ν
∧

i(zQ). 

 
REFRACTION FORMULAS FOR MONOSTATIC 

SOUNDING 
 
Let us consider the first version of the refraction 

problem. The angle of vertical deviation of the antenna axis 
α is known, and the aforementioned geometric parameters 
are to be determined for a given instant of time τ. The 
solution is found in the form of refraction corrections Δ α

r
, 

Δ β
r
, Δ zQ′ , Δ xQ′ , Δ yQ′ , and Δθ to the values of these 

parameters in the homogeneous immovable medium: 
α

r
 = α + π; β

r
 = π; θ = π; xQ = c

0
 τ/2 sin α; yQ = 0; and, 

zQ = c
0
 τ/2 cos α + z

0
. As a result, we obtaine: 

 

for refraction corrections to the angles of the scattered 
signal arrival 

 

Δα
r
(τ) ≈ 2 [Δν

∧

x[zQ(τ)] sec α + vx 0
/c

0
 cos α – vz 0/c

0
 sin α] , (8) 

Δ β
r
(τ)

 
≈ 2 ν

∧

y[zQ(τ)] sec α ; (9) 
 

for displacements of the scattering volume center coordinates 
 

Δ zQ′ (τ) ≈ – (c
0
 τ/2) cos α [Δ T

∧

[zQ(τ)] × 

× (tan2
 α – 1) + Δ α

r
(τ)/2 tan α] ; (10) 

 

Δ xQ′ (τ) ≈ (c
0
 τ/2) cos α [2 Δ T

∧

 [zQ(τ)] tan α + Δ α
r
(τ)/2] ; (11) 

Δ yQ′ (τ) ≈ (c
0
 τ/2) cos α Δ β

r
(τ)/2 ; (12) 

 

and, for refraction correction to the sound scattering angle 
 

Δθ(τ) ≈ –
⎩⎪
⎨
⎪⎧ 

 ⎣
⎡Δα

r
(τ) – 2

⎝
⎛Δ νx[zQ(τ)]

c
0

 tanα + 

+ 
⎦
⎤

⎠
⎞Δ νz[ zQ(τ)]

c
0

 sin α
2 

+ (Δ β
r
(τ) cos α)2

⎭⎪
⎬
⎪⎫ 

 

1/2

. (13) 
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For vertical sounding the equations (8) and (9) give 

the similar relations of the type Δ αx, y(τ) ≈ 2 ν
∧

x, y(zQ) 

which coincide with the analogous formulas in Refs. (2) and 

(8). The expression Δ αx, y(τ) ≈ 2 ν
∧

x, y(zQ) cos α, markedly 

differing from Eqs. (8) and (9) was obtained for slant 
sounding.3 It was noted in Ref. 6 that the experimental 
values Δ αx, y(τ) are better described by the relation 

Δ αx, y(τ) ≈ 2 ν
∧

x, y(zQ) sec α. This contradiction with the 

results of Ref. 3 the authors of Ref. 6 attributed to the 
errors of linear approximation over ε. As Eqs. (8) and (9) 
show, the last statement is not valid. 

It should be noted that the absolute values of errors in 
the aforementioned approximation, when estimating the 
angles, amount to the values of the order of ε2. Therefore, 
they are usually smaller than the instrumental errors and 
not detected in measurements. 

It can be seen from the analysis of intermediate 
calculations for obtaining Eqs. (8) and (9) that the 
multiplier cos α appears in these formulas if in the reference 
equations the angular differences in the directions of n and 
s are neglected. In this case the account of the angle 
between n and s in the final formulas does not provide for a 
correct result. For the same reason the formulas for Δ xQ′  

and Δ zQ′  in Ref. 3 do not coincide with Eqs. (10) and (11). 

The formula for Δ zQ′  from Ref. 7 differs from Eq. (10) in 

that there are no terms containing νx0
 and νz0. As a result, 

it describes the refraction correctly, but the variation in the 
direction of the axis of the real antenna PD is not taken 
into account when a medium flow passes over it. 

It should be noted that in the linear approximation 
over ε the refraction corrections to the angular parameters 
α

r
, β

r
, and θ are determined only by vertical distribution of 

wind velocity in the atmosphere according to Eqs. (8), (9), 
and (13). Contribution of the temperature refraction to the 
values of angular parameters is the value of the second order 
of smallness. What has been said above indicates that a 
principle of reciprocity of direct and scattered beams 
connecting the same pair of points holds in an immovable 
medium. Following this principle, with wind absent, the 
refraction has an equal effect on trajectories of direct and 
scattered beams during monostatic sounding. The directions 
of outgoing direct and incoming scattered beams lie along a 
single straight line in the opposite direction. In the presence 
of wind the refraction has an opposite effect on upward and 
downward beams with common corresponding points. 
Therefore, the tangents to their trajectories differ in 
direction by a small angle of the order of ε. 

Figure 1 depicts the calculational results of refraction 
corrections to the parameters of monostatic geometry made 
using the formulas (8)–(13). From here we represent the 
calculations for a logarithmic profile of wind velocity10 and 
a linear profile of temperature which are described by the 
relations 

 

ν(z) =ν
m

 ln [(z + z
rou

)/z
rou

]/ln [(z
m

 + z
rou

)/z
rou

], ϕ
ν
(z) = const; 

 

T(z) = T
m
 + γ (z – z

m
) , 

 

where z
rou

 is the roughness parameter of the Earth′s surface; 

ϕ
ν
 is the azimuthal direction of wind; γ is the temperature 

gradient; z
m
 is the height of extracting the meteorological 

information; and ν
m
 = ν(z

m
), T

m
 = T(z

m
). 

Figure 1 a indicates the almost linear increase of the 
absolute values of Δ xQ′ , Δ yQ′ , and Δ zQ′  as a function of 

sounding altitude z
Q (expected with the neglect of 

refraction). This is accounted for by the coefficient zQ – z
0
 

in Eqs. (10)–(12). The nonlinearity of function ν(z) in the 
range of 25 to 500 m altitudes is manifested very slightly. 
When v

m
 = 10 m/s the refraction corrections Δ xQ′ , Δ yQ′ , 

and Δ zQ′  increase by about 4 m for each 100 m of the zQ 

increase. Of particular practical importance here is the 
effect of refraction on real altitude of sounding zQ' . In the 

reconstructing the profiles of atmospheric parameters the 
value Δ zQ′  gives the error of fixing their values, measured 

with AR, to the altitude. 
In contrast to Δ xQ′ , Δ yQ′ , and Δ zQ′  the refraction 

corrections to angular parameters of scattered signal do not 
explicitly depend on zQ. The temperature profile does not 

affect here too. Therefore, the variations in Δα
r
, Δβ

r
, and Δθ 

with the altitude z
Q increase are determined by the wind 

velocity profile alone. In particular, curves in Fig. 1 b 
reflect the logarithmic dependence of ν on z which was 
assigned in the calculations. 

 

 
a 

 
b 

FIG. 1. Refraction variations in the monostatic 
geometry parameters as a function of sounding altitude 
zQ for νm = 10 m/s, ϕ

ν
 = 225°, z

rou
 = 2 cm, T

m
 = 20°C, 

γ = –6.5°/km, z
m
 = 1 m, α = 30°, and z

0
 = 2 m. 

a) Δl = Δ xQ′  (1), Δl = Δ yQ′  (2), and Δl = Δ zQ′  (3), 

b) Δα = Δα
r
 (1), Δα = Δβ

r
 (2), and Δα = Δθ (3). 

 

The values Δα
r
, Δβ

r
, and Δθ are known to affect the 

scattered signal power P
r recorded with AR. So they are 

one of the main sources of measurement errors of C
2
T (see  
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Ref. 11). To estimate qualitatively the significance of the 
values Δα

r
 and Δβ

r
, they can be most conveniently compared 

to the angular half–width ψ/2 of the antenna PD. In AR 
ψ/2 is 5–7°, as a rule. As follows from Fig. 1 b, for such 
PDs the ground wind velocity of 10 m/s results in 
substantial decrease of P

r
. Moreover, with strong winds the 

values Δα
r
 and Δβ

r
 are larger than ψ/2. As a result, the 

failure to detect the signal becomes possible. It should be 
noted that the refraction corrections in the linear 
approximation over ε are proportional to ν

m
. Therefore 

Fig. 1 can also be used for their estimate with the other 
values of ν

m
. In this case, all of the corrections in Fig. 1 

should be multiplied by ν
m
/10. 

 
REFRACTION FORMULAS FOR BISTATIC 

SOUNDING 
 

Let us consider the second version of the refraction 
problem. Orientations of transmitting and receiving antenna 
PD axes assigned below by pairs of angles (α*

t
 ≥ 0, β*

t
 = βQ) 

and (α*
t
 ≤ 0, β*

t
 = βQ), respectively, are taken to be known. 

The refraction corrections Δ xQ′ , Δ yQ′ , Δ zQ′ , Δβ
r
, Δ τQ′ , and Δθ 

to the sought parameters without the refraction taken into 
account are needed to be determined: 

 

zQ = d / (tan α
t
* – tan α

r
*) + z

0 
,  

τQ

 
= (zQ – z

0
) (1 / sin ξ

t
* + 1 / sin ξ

r
*) / c

0 
, 

x
Q

 

= (zQ – z
0
)tanα

t
*, yQ = (zQ – z

0
)tanβQ, β

r
 = βQ + π, θ = θ

0
 , 

 

where   

sin θ
0 = (tan α

t
* – tan α

r
*) sin ξ

t
* sin ξ

r
* / cos βQ and  

sin ξ
t
*
,r

 
= (1 + tan2

 α
t
*
,r
 + tan2

 βQ)–1/2 . 
 

The final formulas for this case are obtained: 
for vertical displacement of the scattering volume 

center 
 

Δ zQ′  ≈ – ( zQ – z
0
) εz / (tan α

t
* – tan α

r
* + εz) , (14) 

where  

εz = Δ T
∧

(zQ)
⎝
⎛

⎠
⎞tan α

t
*

sin2ξ
t
*
 – 

tan α
r
*

sin2ξ
r
*

+ Δν
∧

x(zQ)
⎝
⎛

⎠
⎞sec2α

t

sinξ
t
*
 + 

sec2α
r

sinξ
r
*

+ 

 

+
⎝
⎛

⎠
⎞Δ ν

∧

y( zQ) tan βQ – 
ν
z 0

c
0 ⎝
⎛

⎠
⎞tan α

t
*

sinξ
t
*

 + 
tan α

r
*

sinξ
r
*

 + 

 

+ 
ν
x 0

c
0

 
⎝
⎛

⎠
⎞1

sinξ
t
*
 + 

1
sinξ

r
*

 ; 

 

for horizontal displacement of the scattering volume 
center 
 

Δ xQ′  ≈ Δ zQ′  tan α
t
* + ( zQ – z

0
) εx , (15) 

Δ yQ′
 
≈ Δ zQ′  tan βQ + ( zQ – z

0
) εy , (16) 

where  

{εx, εy}= Δ T
∧

(zQ) 
tan{α

t
*, βQ}

sin2ξ
t
*

+{Δν
∧

x(zQ), Δ ν
∧

y(zQ)}
sec2{α

t
*,βQ}

sinξ
t
*

 + 

 

+ {Δ ν
∧

y(zQ), Δ ν
∧

x(zQ)} 
tan βQtan α

t
*

sinξ
t
*

 +  

 

+ 
{ν

x0
, νy0

}

c
0

 
1

sin ξ
t
*
 + 

ν
z 0

c
0

 
tan {α

t
*,βQ}

sin ξ
t
*

 ; 

 

for refraction correction to the angle of scattering signal 
arrival 
 

Δ β
r
 ≈ 

1
2 sin (2 βQ) 

⎩
⎨
⎧Δ T

∧

( zQ) 
⎝
⎛

⎠
⎞1

sin2ξ
t
*
 – 

1

sin2ξ
r
*

+ 

 

+ Δ νx

∧

( zQ) 
⎝
⎛

⎠
⎞tan α

t
*

sin ξ
t
*
 + 

tan α
r
*

sin ξ
r
*

 – 
⎭
⎬
⎫νz 0

c
0 ⎝
⎛

⎠
⎞1

sin ξ
t
*
 + 

1
sin ξ

r
*

 + 

 

+ 
⎝
⎛

⎠
⎞Δ νy

∧

( zQ) + 
ν
y 0

c
0

 cos2βQ  
⎝
⎛

⎠
⎞1

sinξ
t
*
 + 

1
sinξ

r
*

 ; (17) 

 

for refraction correction to the scattering signal arrival 
time 
 

Δ τQ′  ≈τQ [ ε
τ
 – εz(1 – ε

τ
)/(tan α

t
* – tan α

r
* + εz) ] , (18) 

where  

ε
τ
 = PT Δ T

∧

( zQ) + Px Δ ν
∧

x( zQ) + Py Δ ν
∧

y( zQ) + ε
0
; 

 

PT = tan 
2βQ sin ξ

r
* 
⎝
⎛

⎠
⎞1

sin ξ
t
*
 – 

1
sinξ

r
*

+ 

 

+ 
⎝
⎜
⎛

⎠
⎟
⎞cot 2ξ

r
* – 1

sin ξ
t
*

+ 
cot 2ξ

r
* – 1

sin ξ
r
*

 /⎝
⎛

⎠
⎞1

sin ξ
t
*
 + 

1
sinξ

r
*

; 

 

Px=

tanα
t
* cot2ξ

t
* – tanα

r
* cot2ξ

r
* + tan2βQsinξ

r
*
⎝
⎛

⎠
⎞tanα

t
*

sinξ
t
*

 + 

tanα
r
*

sinξ
r
*

1
sinξ

t
*

 + 

1
sinξ

r
*

; 

 

Py = – tan βQ⎣
⎡

⎦
⎤1

sinξ
t
*
 – 

1
sinξ

r
*
 + sec2βQ sinξ

r
* ; 

 

ε
0
 = tan βQ sin ξ

r
* 

ν
y0

c
0
 – 
⎝
⎛

⎠
⎞tan2βQ sinξ

r
* + 

1
sinξ

t
*
 – 

1
sinξ

r
*

 
ν
z0

c
0
 ; 

 

and, for refraction correction to the sound scattering angle 
 

Δθ ≈
⎩⎪
⎨
⎪⎧ 

 
tanβ

Q Δβ
r
 
⎣
⎡

⎦
⎤sec2βQ sin2ξ

t
* – 

tanα
t
*

tanα
t
* – tanα

r
*

+ 

 

+ sin2βQ [g
t
(zQ) + g

r
(z Q)]+  

 

+ cos2βQ 
⎣
⎡gt

(zQ)(tanα
t
* + tanα

r
* cot2ξ

t
*)

tanα
t
* – tanα

r
*

 – 

 

– 
⎦
⎤g

r
(zQ) (tan α

r
* + tan α

t
* cot2ξ

r
*)

tanα
t
* – tanα

r
*

⎭⎪
⎬
⎪⎫ 

 
 tanθ

0
, (19) 

where  
 

g
t,r

( z) = 
Δ T( z)
2 T

0
 ± 

 

± 
⎩
⎨
⎧

⎭
⎬
⎫Δ νx( z)

c
0

 tan α
t
*
,r
 + 

Δ ν
y( z)

c
0

 tan bQ* + 
Δ ν

z( z)

c
0

 sin ξ
t
*

,r
 . 
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The main peculiarity of bistatic sounding as compared to 
monostatic one is the substantial contribution of temperature 
profile of the order of ε1 to angular parameters. Another 
important feature consists in that the final formulas for xQ′ ,  

yQ′ , zQ′ , and τQ′  cannot consistently be linearized with respect 

to ΔT and ν or, more particularly, with respect to εz even 

though the condition ⏐ξ
t, r

⏐. ε is fulfilled. The numerical 

estimates indicate that the trigonometric coefficients for  

Δν
∧

x(zQ) and νx0
/c

0
 in the expressions for εz in Eq. (14) can be 

much larger than unity at certain bistatic geometries. As a 
result, when the wind is strong and longitudinal, νx ≥ 10 m, 

the parameter εz becomes comparable, by magnitude, with the 

difference tan α*
t
 – tan α*

r
. Therefore, further simplifications 

of the formulas (14)–(16) and (18) by neglecting the terms of 
the order of (εz)

2, (εzετ)
1 and higher are possible only when the 

condition (εz/(tan α*
t
 – tan α*

r
)⏐ n 1 holds. When the value 

εz is fixed this inequality is violated with simultaneous 

decrease of ⏐α*
t
⏐ and ⏐α*

r
⏐ or accordingly increase of ⏐ξ

t
⏐ and 

⏐ξ
r
⏐. By this is meant that the applicability limits of 

linearization with respect to ε in the final refraction formulas 
for bistatic geometry parameters are narrower than those in 
the initial equations (3) and (4). 

It should be noted that in the literature there is no 
evidence for usage of slant bistatic geometry in the 
experimental studies of the atmosphere. The account of the 
case β

Q ≠ 0 in Eqs. (14)–(19) is necessary mainly to the 

development of algorithms for estimating the effect of 
refraction on the other, nongeometric, parameters of the AR 
signal. For example, in the AR signal power calculations one 
must carry out the integration over the scattering volume. In 
this case it is divided into a great number of elementary 
volumes, the most part of which is always related to the case 
of β

Q ≠ 0. In these calculations it is necessary to assess the 

different characteristics of signals appearing during scattering 
of sound in each elementary volume. Such calculations, without 
considering the refraction, can be found in Refs. 12 and 13. 

When, with βQ = 0, the effect of refraction only on 

geometric parameters must be assessed, formulas (14)–(19) are 
simplified substantially. In addition it is possible to take into 
account the fact that the value of ν

z is usually small as 

compared to ν
h
. When βQ = 0 and νz = 0, very simple 

relations for angular parameters are derived: 
 

Δ β
r
 ≈ νy

∧

( zQ) (sec α
t
* + sec α

r
*) ; 

 

Δ θ ≈ – 
Δ T( zQ)

2 T
0

 (tan α
t
* – tan α

r
*) – 

– 
Δ νx( zQ)

c
0

 (tan α
t
* sin α

t
* + tan α

r
* sin α

r
*) . 

 

Comparing our formulas with the known ones, we can 
note that the relations for Δ xQ′  and Δ zQ′  in Ref. 2 differ from 

Eqs. (14) and (15) by the value of one order of smallness with 
the considered terms (ε1). The formula for Δβ

r
 in our earlier 

paper9 fully coincides with Eq. (17) and for Δ τQ′  it coincides 

with the relation 
 

Δ τQ′  ≈ τQ [ε
τ
 – εz/(tan α

t
*
 
– tan α

r
*)] , 

which is valid when the condition ⏐εz/(tanα
t
* – tanα

r
*)⏐ n 1 

holds. 

The refraction corrections to the bistatic geometry 
parameters were calculated using formulas (14)–(19). In so 
doing the profiles T(z) and ν(z) were specified similarly to the 
case of monostatic sounding. Below the calculational results 
are represented for rectangular geometry which is most 
frequently used in bistatic ARs. In this geometry the distance 
between the antennas d does not change; the PD axis of one 
of the antennas (in our case it is a transmitting one) is 
constantly oriented vertically (α*

t
 = 0, βQ = 0); and the 

sounding altitude, without considering the refraction zQ, is 

specified by the changeable angle of the PD axis tilt of the 
second antenna (α*

r
 = α*

r
(zQ)). In this geometry for small 

values of zQ, the scattered beam possesses a small slant angle 

over the horizon. As a result, the condition  
⏐ξ

r
⏐ ≈ π/2 –⏐α*

r
⏐ n ε1/2 of applicability of linear 

approximation over ε to its equation R
r
(z) can be unreal. 

Therefore, the calculational results obtained from these 
formulas at these altitudes are liable to breakdown. To 
exclude this case, the calculations for altitudes lower than 
100 m (ξ

r
 < 18.5°) were not carried out. 

 
a 

 
b 

 
c 

FIG. 2. Refraction variations in bistatic geometry 
parameters as a function of sounding altitude zQ for 

ϕν = 225°, zrou = 2 cm, Tm = 20°C, γ = –6.5°/km, 

zm = 1 m, αt* = 0°, βQ = 0°, d = 300 m, and z0 = 2 m.  

a) at ν
m
= 10 m/s Δl= ΔxQ′  (1), Δl= ΔyQ′  (2), and Δl= ΔzQ′  (3); 

b) at ν
m
=10 m/s Δα=Δα

r
 (1), Δα=Δβ

r
 (2), and Δα=–Δθ (3); 

c) at ν
m
 = 0 (1), 5 (2), 10 (3), and 15 m/s (4). 
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Depicted in Figs. 2 a and b are the values Δ xQ′ , Δ yQ′ , 

Δ zQ′ , Δ β
r
, and Δ θ as functions of zQ at ν

m
 = 10 m/s. These 

plots differ qualitatively from the analogous ones for 
monostatic sounding. This is accounted for by the fact that 
in the calculational formulas there are coefficients varying 
as functions of altitude zQ in combination with the angle α*

r
. 

As a rule, they decrease by absolute value with the increase 
of zQ. For this reason in Fig. 2 b Δβ

r
 and Δθ, in formulas for 

which there is no multiplier zQ – z
0
, also decrease by 

absolute value with the increase of zQ. Formula (14) for 

Δ zQ′  is a special case where the decrease of the α*
r
 angle 

with the increase of zQ leads to violation of the inequality 

⏐εz/tan α*
r
⏐ n 1. As a result, starting from some values of 

zQ, the parameter ⏐εz/tan α*
r
⏐ is not a small value of the 

order of ε1. Therefore, very large values of ΔzQ′  can be 

observed (see Fig. 2 a). It should be noted that the curves 
in Figs. 2 a and b can also be used for different values of νm 

not equal to 10 m/s taking account of proportionality of 
refraction corrections to this value. Nonlinearity of formulas 
(14)–(16) and (18) with respect to ν does not manifest 
strongly in this case. 

Figure 2 c depicts the zQ–dependences of relative 

values E
τ
 = ΔτQ′ /τQ⋅100 of refraction displacement of the 

scattered signal arrival time in per cent, which differ by 
different values of ν

m
. Curve 1 in this figure relates to the 

case of refraction due to temperature gradient only. In this 
case the values ⏐E

τ
⏐ do not exceed one per cent. In the 

presence of wind the value ⏐E
τ
⏐ sharply increases attaining 

the value of 20% at maximum altitude zQ = 500 m and 

ν
m
 = 15 m/s. What this means is a dominating effect of 

wind in atmospheric refraction of sound. 
The behavior of curves as a function of zQ depicted in 

Fig. 2 with other bistatic geometries can differ in some way. 
However, the absolute values of refraction corrections 
coincide by the order of magnitude. 

 
ACCURACY CHARACTERISTICS OF REFRACTION 

FORMULAS 
 

It is interesting to estimate numerically the accuracy in 
describing the effect of refraction on geometry of acoustic 
sounding with formulas of linear approximation over ε (in 
those cases where the condition of their applicability 

⏐ξ
t,r

⏐ . ε holds). To this end, the aforementioned 

calculations of refraction corrections to geometric 
parameters were also carried out based on accurate 
equations (1)–(5) and (7). In this case Eqs. (1) and (3) 
were reduced to two scalar equations: x

t
(zQ′ ) = x

r
(zQ′ ) and 

y
t
(zQ′ ) = y

r
(zQ′ ). The system of three equations incorporating 

both this pair of equations and Eq. (2) was computed on a 
personal computer with respect to three parameters the 
choice of which depended on the used version of refraction 
problem statement. The values z

Q′ , αr
, β

r
 and zQ′ , βr

, τQ′  were 

found for monostatic and bistatic sounding, respectively. 

The method of dichotomy14 (halving the segment) was 
used for numerical solution of accurate equations with 
respect to zQ′  and angular parameters. The initial boundaries 

of searching real values of these parameters were specified 
taking account of the value ⏐ε⏐ in the vicinity of their 
values when there was no refraction. A need for multiple 
calculation of integrals of the type (3) and (4) during 

realization of this algorithm made the computational time 
much longer. This, in its turn, restricted the real possibilities 
of decreasing the calculational errors. In the case of monostatic 
geometry, we used a three–fold method of dichotomy for 
simultaneous determination of the three unknown parameters. 
The accuracies of calculations of z

Q′  and angles α
r
 and β

r
 were 

specified as 5 cm and 0.05°, respectively. When calculating 
the bistatic geometry, we used only a two–fold method of 
dichotomy for simultaneous determining the values zQ′  and β

r
. 

Here the third unknown parameter τQ′  is described by Eqs. (2) 

and (4) in an explicit form. Therefore, the higher calculational 
accuracy was specified here: for zQ′  – better than 1 cm and for 

β
r
 – better than 0.01°. After calculations of these parameters 

we found the values x
t
(zQ′ ) and y

t
(zQ′ ) from Eq. (3) and the 

angle θ(zQ′ ) from Eqs. (5) and (7). The absolute errors in 

estimating the parameters were determined as a difference 
between their values calculated from approximate and accurate 
formulas (δx = x

L
 – x

T
). 

 

 
a 

 
b 
 

FIG. 3. Errors in estimating the refraction changes in the 
monostatic geometry parameters via formulas of linear 
approximation as a function of sounding altitude zQ for 

ν
m
= 10 m/s, ϕ

ν
= 225°, z

rou
= 2 cm, T

m
= 20°C, γ = –6.5°/km, 

z
m
 = 1 m, α = 30°, and z

0
 = 2 m. a) δl=Δx ′L–Δx ′T (1),  

Δy ′L–Δy ′T (2), and Δz ′L–Δz ′T (3); b) δα=Δα
r L–Δα

r T (1), 

Δβ
r L–Δβ

r T (2), and ΔθL–ΔθT (3). 
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Figure 3 depicts the calculational results of these 
errors for monostatic sounding. Here the errors in 
determining the refraction displacements of the scattering 
volume center coordinates δ xQ′ , δ yQ′ , and δ zQ′  turn out 

to be proportional to zQ – z
0
 and ν

m
 as well as their 

values. When ν
m
 = 10 m/s and zQ = 500 m the value 

δ zQ′  in Fig. 3a is maximum, i.e., 2 m, that is not more 

than 10% of Δ zQ′  (see Fig. 1 a) or 0.6% of zQ′ . Thus, the 

relative error in determining zQ′  from the approximate 

formulas is about 0.6⋅10–2 ν
m
 (in %). 

The calculations of δα
r
, δβ

r
, and δθ depicted in 

Fig. 3b did not reveal somewhat marked z
Q–dependence 

for them. Their values at ν
m
 = 10 m/s were about  

0.1–0.2°. Since these values did not substantially exceed 
the calculational errors in α

r
, β

r
, and θ using the accurate 

formulas (0.05°), then these errors are seen as fluctuations 
of the curves in Fig. 3b. It turned out that the relation 
δα ≈ 2⋅10–2 ν

m
 (in degrees) can be used for rough 

estimation of the absolute errors in determining the 
angular parameters. 

The calculational results of accuracy characteristics 
of approximate formulas for bistatic sounding are 
represented in Fig. 4. It was found for rectangular 
geometry that δ xQ′  and δ yQ′  are very small (not more 

than 20 cm), and practically undependent on zQ at 

altitudes between 100 and 500 m (see Fig. 4a). This is 
accounted for by the fact that in rectangular geometry 
there is practically no refraction distortion of a vertical 
beam (ξ

t
 = π/2). The value δzQ′  in this case decreases 

monotonically with zQ increase from 1.7 to –1.6 m and 

passes zero when zQ ≈ d/2. This behavior of the error δzQ′  
is caused by the effect of zQ – z

0
 multiplier in Eq. (14) 

at high altitudes zQ and by weakening of inequality 

ξ
r
 . ε at lower altitudes. The errors in determining the 

angular parameters δβ
r
 and δθ do not usually exceed 0.3° 

by absolute value in Fig. 4b. The exception is the δβ
r
 

behavior at z
Q < 150 m where the constraints on 

applicability of expansion over ε to the equation for a 
scattered beam can start their effect in estimating β

r
. 

With the wind velocity ν
m
 decrease the errors depicted in 

Figs. 4a and b reduce proportionally. 
Figure 4c represents a relative error in estimating 

the scattered signal arrival time via the approximate 
formulas δE

τ
 = (τ ′

QL
 – τ ′

QT
)⋅100 at different wind 

velocities ν
m
. In the presence of refraction caused only by 

temperature gradient this error at all of the calculated 
altitudes proved to be practically zero. When there was 
wind at altitude z

Q ≈ d/2, it was also close to zero, and 

at altitudes zQ > d/2 it increases with the zQ increase 

proportionally to ν(zQ) (according to the logarithmic 

law). It is seen from the comparison between the values 
δE

τ
 in Fig. 4c and E

τ
 in Fig. 2c at zQ = 500 m for 

different ν
m
 that the relation P

τmax
 ≈ 0.25⋅ν

m
 (in %) is 

valid for an approximate estimate of the maximum value 
of the parameter P

τ
 = ⏐δτ ′Q/Δτ ′Q⏐⋅100 (in %) which 

characterizes a relative error in determining the refraction 
displacement Δτ ′Q. 

 
a 

 
b 

 
c 
 

FIG. 4. Errors in estimating the refraction changes in the 
bistatic geometry parameters via formulas of linear 
approximation as a function of sounding altitude z

Q for 

ϕ
ν
 = 225°, z

rou
 = 2 cm, T

m
 = 20°C, γ = –6.5°/km, z

m
 = 1 m, 

α*
t = 0°, βQ = 0°, d = 300 m; z

0
 = 2 m. a) at ν

m
 = 10 m/s 

δl=Δx ′QL–Δx ′QT (1), Δy ′QL–Δy ′QT (2), and Δz ′QL–Δz ′QT (3); 

b) at ν
m
 = 10 m/s, δα = Δβ

r L
–Δβ

r T
 (2), and δα = Δθ

L
–

Δθ
T
 (3); and, c) at ν

m
 = 0 (1), 5 (2), 10 (3), and 15 m/s (4). 

 

CONCLUSION 
 

In this paper we present a system of accurate equations 
which takes into account the relations of geometric acoustic 
of stratified moving medium which enables one to analyze 
and assess numerically the effect of refraction on parameters 
of acoustic sounding geometry of the atmosphere. After 
linearization of accurate equations with respect to ⏐Δc⏐/c

0
 

and ν/c
0
 we derived the analytical solution for these 

parameters which are valid for any real temperature 
profile and wind velocity in the atmosphere and sounding 
geometry with the exception of small altitudes of  
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sounding using bistatic geometry. They provide, within their 
applicability limits, a good accuracy in estimating these 
parameters at calculational time shorter by one–two orders of 
magnitude than the interval between two consecutive 
transmission of sounding acoustic pulses into the atmosphere. 
Therefore, they can be used in algorithms for processing the 
experimental data of AR in real time. Since the effect of 
temperature refraction is relatively weak one should take into 
account the refraction caused by wind alone. 

At the same time, to solve these problems directly from 
an accurate equations, we must employ the numerical 
methods. As a result, the geometric parameters obtained in 
this case are also approximate. It should be noted that the 
equal accuracy in estimating these parameters from the 
accurate formulas requires the calculational time by two orders 
of magnitude longer than that for the estimates from the 
approximate formulas. The decrease of this time by a factor of 
about n results in the n3– and n2 –fold increase of errors in 
estimating the required parameters for monostatic and bistatic 
sounding, respectively. For this reason, the numerical solution 
of accurate equations can be used only in some theoretical 
studies. 
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