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The method for reconstructing the disperse medium characteristics by means of 

linear functions of measured parameters in application to studies of the atmospheric 
aerosol is proposed. The optimization problem with restrictions in the form of the 
system of linear equations is formulated to find the coefficients of linear regression. 
The optimization criterion and additional a priori information are chosen with respect 
to the peculiarities of formation and existence of real atmospheric aerosol related to its 
multifractional structure. Application of the method to data processing of 
multifrequency laser sounding of the atmosphere is considered. Some results of 
numerical calculations are presented. 

 
Optical methods of studying the atmospheric aerosol are 

now widely used in practice. They are more efficient and 
informative when complicated data on aerosol properties at 
various altitudes are needed and long–term monitoring is 
desired. The reconstruction of aerosol parameter from optical 
measurement data falls into a class of an ill–posed problems 
whose solutions are unstable with respect to measurement and 
calculation errors.1  

The applicability of linear–estimation technique to 
determination of integral parameters of aerosol fine structure 
from optical characteristics was considered in Ref. 2. Simple 
linear relations between the parameters of scattering particles 
obtained by this approach allow the data processing to be 
done directly during measurements. 

Efficiency of the linear–estimates method strongly 
depends on the choice of particle size–distributions ensemble 
for which the regression parameters are to be determined. If 
real objects do not agree with this a priori information, the 
reconstructed parameter values can be physically senseless. In 
this paper, to develop the method of Ref. 2, we assume the 
multicomponent structure of a disperse medium and introduce 
additional conditions concerning the physical models of 
formation and transformation of typical kinds of aerosol 
(continental, maritime, etc.). This allowed us to obtain the 
estimates of aerosol parameters accurate enough and quite 
stable to significant scatter of measured data. The common 
approach to making such estimates is given, and concrete 
formulas and numerical results for the calculation of 
extinction coefficient from backscattering spectral data are 
presented. Such a statement of the problem was inspired by 
the fact that determination of relations between extinction and 
backscattering coefficients is a key point in the methods of 
multifrequency laser sounding of atmospheric aerosol.3 

 
1. CONSTRUCTION OF LINEAR ESTIMATE OF THE 
PARAMETERS OF MULTICOMPONENT AEROSOL 

 
Let us analyze the aerosol parameters that can be 

presented as functionals of size–distribution density ϕ(r) 
 

M[l ϕ] = ⌡⌠ l(r) ϕ(r) dr , (1) 

 

where l(r) is the weighting function specifying the sense of 
M[l, ϕ] (backscattering, extinction, mass concentration, 
etc.). The aerosol is considered as a polydisperse ensemble 
of uniform spherical particles. 

The task is to present a sought parameter η as a linear 
combination of measured values of the parameter ξ 
 
η = xT ξ + ε , (2) 
 
where ε is the random deviation, and xT is transposed vector 
of expansion coefficients.  

One can find these latter coefficients by minimizing 
the mean square difference over the ensemble of size–
distributions 
 

g = (xT ξ – η)2  = min . (3) 

 
The bar means averaging over ensemble, and r is the 
particle radius. 

To construct a linear estimate of η we use the 
representation of aerosol as an ensemble of statistically 
independent fractions with different formation mechanisms 
(maritime, dust, water–soluble, etc.).4,5 Then the 
parameters ξ and η are  
 

ξ = ∑
j=1

p

 cj ξ
 j ,  η = ∑

j=1

p

 cj η
 j , (4) 

 
where ξ j and η j refer to different aerosol fractions with 
corresponding distributions ϕj(r) and optical properties of 

particles, p is total number of fractions, and cj is the 

number density of the jth fraction. Distribution of every 
fraction is a stochastic function, but the common one can be 
presented as a linear combination of the mean distributions 

ϕj(r)  with good accuracy in various typical situations, as 

it follows from experimental results on aerosol 
microphysical characteristics. In other words, the change of 
aerosol particle distribution is rather a change of densities  
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of individual conservative fractions than variation of the 
shape of their size distributions. Therefore, in order to 
reduce the η estimation error we impose the following 
additional restrictions on linear regression coefficients: 
 

xT ξ j  = η j  ,  j = 1, ... , p . (5) 
 

Equation (5) requires accurate description, by means of a 

linear estimate, of the relation between averages ξ j and η j . 

By transforming Eq. (3) and combining it with 
Eq. (5), we derive the following conditions for regression 
coefficients2: 
 

⎩⎪
⎨
⎪⎧  g
∼
 = xT Φ x – 2 LT x = min ,

xT ξ j = η j ,  j = 1, ... , p ,
 (6) 

 

where g∼ = g – α; Φ = ξ ξT  is the n × n matrix; L = ξ η  

is the n–component vector; and, α = η2  is a scalar. By 

definition the matrix Φ is symmetric and non–negative. 
As a result, we obtain the linear regression problem 

with linear restrictions giving a priori information on the 
parameters, which can be solved with one of the known 
methods (see, e.g., Ref. 6). 

 
2. LINEAR ESTIMATE OF EXTINCTION 

COEFFICIENT FROM THE BACKSCATTERING ONE 
 

We have applied the above described procedure to the 
problem of reconstructing the aerosol extinction coefficient 
from a given backscattering spectrum. One has to determine 
the coefficients in the expression 
 

σ
∧

l = xT β , (7) 
 

where σ
∧

l is the estimate of aerosol extinction at the 

wavelength λl , and β is the n–component vector of the 

backscattering coefficient at wavelengths λi , i = 1, ... , n. 

The solution of this problem is a basis for methodology for 
processing data of multifrequency laser sounding, because it 
allows the system of lidar equations for different 
wavelengths to be closed.3 Besides, Eq. (7) can be used 
directly, i.e., for determination of aerosol extinction 
coefficient from the measured backscattering one. 

Values of extinction (σ) and backscattering (βi) 

coefficients at wavelengths λi in a multicomponent disperse 

medium depend on size–distribution densities for various 
fractions as follows: 
 

βi = ⌡⌠ πr2 ∑
j=1

p

 cj Kπij
(r) ϕj(r) dr ; (8) 

σi = ⌡⌠ πr2 ∑
j=1

p

 cj Klj
(r) ϕj(r) dr , (9) 

 

where i = 1, ..., n, n is the number of wavelengths; Kπij
(r) 

and Klj
 are the efficiency factors of backscattering and 

extinction for jth fraction, respectively. 
We assume no correlation between distribution 

variations of different fractions. That does not affect the 
generality of the model, because two interacting fractions 

can always be considered as a single one. Hence, the 
correlation function is of the form 
 

ϕj(r) ϕκ(r′)  = ϕj(r)  ϕκ(r′)  + cov(ϕj(r) ϕj(r′))δjk , (10) 

 

where δjk is the Kronecker symbol. 

We also do not loose generality if suppose that 
ϕj(r) = 0 at r > R, for all j ignoring the behavior of the 

function out of [0, R] interval. Therefore, the conditions (6) 
for the linear estimate (7) become 
 

⎩⎪
⎨
⎪⎧  g
∼
 = xT Φ x – 2 LT x = min ,

BT x = L* .
 (11) 

 

Once Eqs. (8)–(10) are written, the vectors and 
matrices introduced earlier take the form 
 
Φ = CΦikC ,  i, k = 1, ... , n , 

Φ = (B c) (B c)T + Φ
∼
 ,  Φ

∼
 = ∑

j=1

p

 c2
j Φ
∼ j ; 

B = C Bij C ,  i = 1, ... , n ,  j = 1, ... , p , 

Bij = ⌡⌠
0

R

 πr2Kπij
(r) ϕj(r)  dr ; 

Φ
∼ j

ik = ⌡⌠ ⌡⌠ 

0

R

π2r4Kπij
(r) cov(ϕj(r)ϕj(r′))Kπkj

(r′) dr dr′ ;  (12) 

L = (B c) (cT L*) + L
∼
,  L

∼
 = ∑

j=1

p

 c2
j L
∼j , 

L*j  = ⌡⌠
0

R

 πr2Klj
(r) ϕj(r)  dr ,  j = 1, ... , p , 

L
~ j

i = ⌡⌠ ⌡⌠ 

0

R

π2r4Kπij
(r) cov(ϕj(r)ϕj(r′))Klj

(r′) dr dr′ ; 

α = (cTL*) (cTL*) + α
∼
 ,  α

∼
 = ∑

j=1

p

 c2
j α
∼j , 

α
∼j = ⌡⌠ ⌡⌠ 

0

R

π2r4Klj
(r) cov(ϕj(r)ϕj(r′))Klj

(r′) dr dr′ . 

 
As it follows from Eqs. (12), when solving the 

system (11) absolute values of number densities do not 
affect the resulting linear regression coefficients; only 
fractions percentage is important. This allows one to choose 
numerical values of cj for the convenience of making 

calculations. 
The linearity of Eq. (7) provides simple evaluation of 

the error in the backscattering coefficient on resulting 
estimate uncertainty. 

The construction of estimates for other integral 
parameters of the form (1) will obviously change only 
weighting functions Kπ and Kl in all the above expressions 

 
3. RESULTS OF NUMERICAL EXPERIMENTS 
 
To perform concrete computations according to the 

above–mentioned scheme we should preliminarily define 
some properties of statistical ensemble considered. The a 
priori aerosol information was set as follows. We determine  
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the number p of independent fractions and optical 
constants m = n – i κ for each of them, to calculate 
weighting functions of optical parameters. Then we find 
the mean values of number density and size distribution 
for each fraction as well as covariance functions 
cov (ϕj(r) ϕj(r′)). The choice of numerical values of the 

above quantities and analytical views of the functions has 
been done based on data on the properties of atmospheric 
aerosol available from literature. 

The described algorithm was realized as a software 
package for an IBM PC/AT computer. The computations 
were carried out for continental and maritime types of 
aerosol according to the SRA–84 models proposed by 
International Radiation Commission.7,8 The results 
presented below refer to the maritime aerosol model. 

The maritime model implies existence of two 
fractions: water–soluble and oceanic, each of them being 
described by the lognormal distribution with parameters 
presented in Table I. 

 
Table I. Parameters of maritime aerosol model. 
 

Parameters Water–soluble Oceanic 
Refractivity, n (real part) 1.53 1.38 
Absorption coefficient, κ 
(imaginary part) 

 
0.007 

 
5.e – 08 

Dimensional parameter of 
lognormal distribution 
(μm), rm 

 
 

0.005 

 
 

0.3 

Width parameter of 
lognormal distribution, σ* 

 
1.094 

 
0.921 

Number density, ñj 9.9957413e – 01 4.2587e – 04

 
The covariance functions were defined as follows: 

cov(ϕj(r) ϕj(r′)) = ϕj(r)  ϕj(r′)  ωj(r, r′) × 

 
× ((exp (σ2(r)) – 1) (exp (σ2(r′)) – 1))1/2 ,  j = 1, ... , p , (13) 
 
where σ2(r) is the variance of lnϕ(r) at the point r, and 
ωj(r, r′) is the normalized correlation function of the form  

 
ωj(r, r′) = exp (– (r – r′)2 ν / D2

j) , j = 1, ... , p . (14) 

 
We have taken σ2(r) = ln 2 = const, ν = ln 10, and 
Dj = 0.1 μm, according to the results of measurements of 

the statistical parameters of aerosol size–distribution 
functions (in particular, from Ref. 9). The weighting 
functions Kπij

(r) and Klj
 of backscattering and extinction 

coefficients were calculated by Mie formulas. 
The size–distribution function was considered to be 

normalized, i.e.,  
 

⌡⌠
0

∞

 ∑
j=1

p

 cj ϕj(r) dr = 1 . (15) 

 
In Table II we present in matrix form the coefficients 

for obtaining the extinction coefficients from given 
numerical values of the backscattering ones for the set of 
seven wavelengths of the multifrequency Gloria–M lidar.10 

 

Table II. Matrix of coefficients for reconstructing extinction 
coefficients from the values of backscattering ones. 
 
λ, 
nm

1 2 3 4 5 6 7 

380 38.835 9.3629 1.8783 –12.415 14.044 –13.249 –35.788
430 32.436 7.9725 1.9715 –9.5500 11.614 –10.652 –27.829
510 23.598 6.5491 2.4238 –5.3609 8.2954 –6.9719 –18.331
585 18.405 4.1058 1.8990 –1.3087 5.8328 –4.3359 –11.362
694 14.341 0.53227 0.16042 1.6695 4.4344 –1.6419 –2.9240
860 7.7886 0.71204 –2.0632 3.8508 0.91496 2.1870 7.1123 
965 2.7826 1.9188 –0.40919 4.4691 –1.3821 2.8027 12.218 

 
Figure 1 illustrates the results of numerical experiment 

on the evaluation of measurement error influence on the 
accuracy of resulting linear estimates. The microphysical 
parameters of aerosol fractions were taken from Table I. 

Three different situations concerning pure oceanic 
(c1 = 0), pure water–soluble (c2 = 0) fractions, and the 

mixture of both these fractions with the number density 
ratio as indicated in Table I, were considered. The "true" 
values of extinction (σi) and backscattering (βi) coefficients 

were calculated for seven wavelengths (curves 1–3 in Fig. 1 
are shown in relative units). Then we introduced a random 
normally distributed error in βi with relative rms 

fluctuation of 10%. From spectral dependences of β
∼

i, 

perverted by "measurement" errors we reconstructed the 

spectra of extinction coefficients σ
∼

i with the help of transfer 

matrix (Table II). To obtain statistically proved results this 
procedure was repeated 8 000 times. The rms fluctuations of 

σ
∼

i are shown by bars at corresponding curves. 

 

 
 

FIG. 1. Measurement error influence on a quality of 
reconstruction of extinction coefficient spectral behavior 
for maritime aerosol model: water–soluble (1), 
oceanic (2), and maritime (3). 

 
It is seen from Fig. 1 that, first, the use of a given 

transfer matrix does not lead to systematic error even at 
strong variations of number densities of different fractions, 
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and, second, the strengthening factor of measurement 
errors in most cases is rather close to unity. 

As it was already mentioned, significant source of 
errors in linear estimates calculations is the discrepancy 
between microphysical parameters of real atmospheric 
aerosol fractions and a priori model data. Below we 
present the results of two numerical experiments on 
investigating effects of this discrepancy. 

In the first one, we analyzed errors caused by 
variation of parameters of lognormal distribution. A grid 
of values of rm and σ* was taken (see Table III) which 

produced 15 realizations for each fraction.  
 

Table III. Variations of parameters of lognormal 
distribution for maritime aerosol fractions. 
 

Water–soluble Oceanic 
rm σ* rm σ* 

0.005 0.7 0.20 0.80 
0.01 1.0 0.25 0.90 
0.05 1.3 0.30 0.95 
0.1 – 0.35 – 
0.2 – 0.40 – 

 
The size–distribution of aerosol particles was defined 

in such a way that microphysical parameters of one 
fraction were taken constant (from Table I) while those 
of second fraction varied according to Table III so that 
for every value of rm the value σ* varied thrice. The 

number density coefficients of varied fraction were taken 
in order that backscattering coefficient for λ4 coincides 

with β(λ4) for corresponding maritime fraction. For these 

distributions, the "true" values of βi and σi were 

calculated, and estimates of the extinction spectral 
dependence were derived from βi with the transfer matrix. 

Then we obtained err0 (maximum, of all λi , value of 

error of σi reconstruction) and err2 (rms relative error). 

The results of calculations are presented in Table IV. 
 

Table IV. Relation between errors of a priori information 
about size distribution of aerosol particles and those of 
reconstruction of the extinction coefficient from the 
backscattering one. 
 

 Variations of water–
soluble fraction 

Variations of oceanic 
fraction 

N err0 err2 err0 err2 

1 4.0714e – 001 3.1921e – 001 3.3962e – 001 2.1196e – 001
2 3.5580e – 002 2.0846e – 002 1.8539e – 001 1.1402e – 001
3 7.8484e – 003 5.1657e – 003 1.0352e – 001 6.4389e – 002
4 1.9823e – 001 1.5393e – 001 2.6003e – 001 1.5827e – 001
5 5.0544e – 003 3.8163e – 003 9.7336e – 002 5.9186e – 002
6 4.2203e – 002 2.7019e – 002 1.7826e – 002 1.1739e – 002
7 2.9309e – 002 2.2286e – 002 1.8500e – 001 1.1364e – 001
8 9.8069e – 003 7.4724e – 003 2.1383e – 002 1.4290e – 002
9 2.5211e – 001 1.4846e – 001 5.5873e – 002 3.2763e – 002
10 1.1789e – 001 5.8171e – 002 1.1603e – 001 7.4170e – 002
11 1.2255e – 001 6.9072e – 002 4.4443e – 002 2.6978e – 002
12 3.7872e – 001 2.3135e – 001 1.1718e – 001 6.9194e – 002
13 1.7566e – 002 1.0265e – 002 5.9680e – 002 3.9308e – 002
14 2.8968e – 001 1.6496e – 001 1.0131e – 001 6.0501e – 002
15 5.3918e – 001 3.5733e – 001 1.6827e – 001 9.9320e – 002

 
In the same manner we performed the experiment on 

detection of linear estimates errors due to variations of 
refractivity (Table V). The results are presented in 
Table VI. 

It is seen from Tables IV and VI that deviations of 
microphysical parameters of fractions from model values 
may cause significant systematic errors. Nevertheless, the 
obtained transfer matrix gives good accuracy in a wide 
range of variations of particle optical constants and size–
distributions. 

 

Table V. Refractivity variations for maritime aerosol 
fractions. 

 

Water–soluble Oceanic 
n κ n κ 

1.45 0.001 1.33 5.e –9 
1.50 0.005 1.36 5.e –7 
1.52 0.010 1.40 5.e – 6 
1.54 – 1.43 – 
1.57 – 1.45 – 

 

Table VI. Relation between errors of a priori information 
about refractivity and those of reconstruction of the 
extinction coefficient from the backscattering one. 

 

 Variations of water–
soluble fraction 

Variations of oceanic 
fraction 

N err0 err2 err0 err2 

1 1.2080e – 001 7.9176e – 002 2.1576e – 001 2.0018e – 001
2 1.7240e – 001 1.1616e – 001 2.1602e – 001 2.0054e – 001
3 2.2524e – 001 1.5523e – 001 2.1811e – 001 2.0362e – 001
4 8.4971e – 003 7.4493e – 003 1.5579e – 001 1.3000e – 001
5 4.8782e – 002 3.2000e – 002 1.5686e – 001 1.3070e – 001
6 1.0931e – 001 7.4697e – 002 1.6111e – 001 1.3381e – 001
7 5.9966e – 002 4.1099e – 002 2.4560e – 001 1.7003e – 001
8 2.2482e – 003 1.9913e – 003 2.4429e – 001 1.6917e – 001
9 6.0911e – 002 4.1803e – 002 2.3337e – 001 1.6195e – 001
10 1.0903e – 001 7.2973e – 002 3.5256e – 001 2.6636e – 001
11 5.0693e – 002 3.3948e – 002 3.5132e – 001 2.6550e – 001
12 1.4165e – 002 1.0457e – 002 3.4291e – 001 2.5944e – 001
13 1.7555e – 001 1.1562e – 001 2.1950e – 001 1.3067e – 001
14 1.1555e – 001 7.6192e – 002 2.1919e – 001 1.3010e – 001
15 4.8812e – 002 3.1409e – 002 2.1661e – 001 1.2608e – 001

 

The obtained coefficients matrices of linear estimates 
of extinction coefficients from the backscattering ones for 
maritime and continental types of aerosol were applied to 
processing data of multifrequency laser sounding of the 
atmosphere performed with the use of Gloria–M lidar 
(Ref. 10) in the Atlantic territorial waters and in 
agricultural and industrial areas of Belarus Republic. The 
transfer matrix similar to the one presented in Table II, 
was calculated for each type of aerosol. Use of algorithms 
of aerosol optical characteristics calculations based on 
these relations improved the quality of reconstruction of 
extinction (σa(λ, h)) and backscattering (βa(λ, h)) 

spectral dependences as compared with the scheme from 
Ref. 2 or with those obtained at a preset lidar ratio. For 
instance, we avoided solutions without physical sense. 
Thus calculated values of βa(λ, h) and σa(λ, h) better 

describe spatial variations of particle microphysical 
properties during transition from aerosol atmosphere to 
optically thin cloud layers.  

 

CONCLUSION 
 

In this paper we propose a linear estimates method 
to obtain integral parameters of fine structure of disperse 
media and its application to the investigation of 
atmospheric aerosol. The basic method from Ref. 2 is 
modified by introducing additional restrictions in the 
form of system of linear equations based on physical 
properties of atmospheric aerosol. The results of numerical  
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experiments show that the method provides good accuracy of 
reconstruction of aerosol parameters and good stability of 
obtained linear estimates to variations of the initial data. 

The presented scheme is convenient for calculation of 
parameter estimates in various synthetic aerosol models, 
because it allows one to use preliminary obtained calculations 
referring to basic aerosol fractions. 
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