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Formulas for reconstructing the radiation intensity from the measured values of 
temperature of a target heated by the radiation are obtained. They are convenient for 
quick manual processing with calculators. 

 

Reconstruction of the radiation intensity from the 

temperature of a heated surface (the problem of conversion 

of the boundary conditions) is the particular case of inverse 

problem of heat conduction.1,2 This problem occurs when 

direct measurement of the radiation intensity, which heats 

the target, is unfeasible and only the temperature field of 

heated specimen is known. 

In Refs. 1 and 2 the relationships for reconstruction of 

the intensity distribution from the surface temperature of a 

heated target are presented. Assuming the side surface to be 

heat–insulated and the intensity distribution over its front 

surface to be uniform, we can write the relation between the 

radiation intensity and a temperature on the target surface 

for following situations: 

a) the temperature of the back surface of the target is 
maintained at its initial magnitude T(t) = T
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b) the back surface of the target is heat–insulated 
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where a2 and k are the thermal diffusivity and the thermal 

conductivity coefficients, and L is the thickness of the 

target. 

The algorithms for solving this problems is determined 

by design features of the temperature sensors and their 

positions at the target surface. In the simplest case we can 

measure the temperature over the target surface; in other 

cases the measurements of temperature are possible only in 

the depth of target at some distance from surface. Therefore, 

of interest is the two limiting cases, namely, the 

approximations of thick and thin targets, for which a 

thermophysical Fourier parameter Fo = a2t/L2 takes the 

values 
 

Fo > 1 (3) 
 

and 

Fo < 1 , (4) 
 

respectively. 

Let us consider first the situation (a) when the 

temperature of the back surface of the target is maintained 
at its initial magnitude (T(L, t) = T

i
) under condition (3). 

We make use of the following heuristic considerations. The 

kernel of Eq. (1) represents the sum of deltoid peaks in the 

proximity of the upper integration limit. Assuming that 

dT(t)/dt is the slowly variated function within the width 

of a peak we can factor it outside the integral sign without 

essential loss in accuracy. As a result, after integration we 

obtain 
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Neglecting the terms of higher–order infinitesimalicity 

and taking into account that 
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6  , (6) 

 

we obtain 
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In a similar manner, taking into account the equality 
 

∑
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we obtain for the boundary condition (b) 
 

I(t) = 
κL

a2  
d T(t)

d t  . (9) 

 

Let consider the case of semi–infinite target (the 

inequality (4)). The direct substitution of the inequality (4) 

into Eqs. (1) and (2) makes the analysis of asymptotic very  
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complicated. That is why let us make the preliminary 

rearrangements of the kernels of Eqs. (1) and (2). 

The kernel of Eq. (1)  
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after simple rearrangements can be written as 
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where δ(z) is the Dirac delta function. 

In accordance with the theory of generalized functions 

we can establish the next identity3,4 
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Substituting the identity (12) into Eq. (11) and performing 

the Fourier transform we can write the following expression 

for the kernel: 
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Taking into account the inequality (4) and keeping only the 

first term of expansion (13), after substituting it into 

Eq. (1) we obtain the well–known Abel's equation  
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The same equation also takes place for the boundary 

condition (b), but in the last case we should use in the 

intermediate rearrangements the following generalized 

identity3,4: 
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Let represent the obtained limiting relationships in 

discrete form suitable for numerical calculation with a 

computer. Having divided the time interval [0, t] into N 

sufficiently small intervals Δt, and denoted the discrete  

value of measured temperature on the surface by 
T(mΔt) = T(t

m) = Tm , m = 1, 2, ..., N, we can write the 

discrete analogs of limiting relationships at Fo > 1 for 

conditions (a) and (b), respectively: 
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In semi–infinite approximation (at Fo < 1) after 

approximated calculation of the integral in the right–hand 

part of Eq. (14), we obtain 
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After rearrangements we obtain the discrete analog of Abel's 

equation (14) 
 

I(N Δt) = 
κ

a π
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 (Tm – Tm–1
) CN–m , (19) 

 

where Cj = 2( j + 1 – j). The area of applicability of the 

formula (19) is restricted by the condition Fo < 1, but in 

practice we can use it when Fo ≤ 0.1. 

Thus, for the boundary conditions (a) and (b) in the 

approximations of thin and thick targets we obtain the 

simple analytical relationships and their discrete analogs 

which relate the radiation intensity with the temperature of 

heated target surface. This formulas are convenient for 

manual processing with calculators. 
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